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Abstract. Blow-ups are useful tools in algebraic geometry. We will look at one specific yet common

example, namely the blow-up of the affine plane at the origin. The result is a space which is
isomorphic to the affine plane, except at the origin; the origin is replaced with a projective line. We

will see that blow-ups are primarily useful in resolving (i.e. smoothing) singularities, in this case
those on curves in the plane. We will assume no prerequisite knowledge in algebraic geometry.

1. Motivation

For this talk, we will work over the real numbers. Let the affine plane be

A2 := {(a, b) : a, b ∈ R}.

This is essentially R2, we just use different notation so as not to confuse with the two-dimensional
real vector space (i.e. we forget the vector space structure). Let f = y2 − x3 − x2, and consider the
curve C ⊂ A2 given by the points satisfying the equation f = 0. By looking at its graph, we would
agree that the curve is not smooth at the origin P = (0, 0), because two different branches intersect
there and form a node. One way to verify this is via the Jacobian (which you may be familiar with
from differential geometry). Consider the matrix[

∂f

∂x

∂f

∂y

]
=

[
−3x2 − 2x 2y

]
.

A point (a, b) ∈ C will be smooth if this matrix, when evaluated at the point (a, b), has rank at least
2−1 = 1, where the 2 is the dimension of the ambient plane we are in, and 1 is the codimension of the
point in the curve C. If (a, b) 6= (0, 0), then one of the coordinates is nonzero, so one of the entries in
the matrix is nonzero, thereby giving it rank 1. So C is smooth at all of these points. However, at the
origin, this matrix has no rank, so it is not smooth here. We call this point singular, or a singularity.

Ideally, we want to smooth this curve, or resolve its singularity. To be more precise, what we want
is a map π : C̃ → C, such that

(1) C̃ is a smooth curve (i.e. smooth at all points),
(2) π is surjective,
(3) at every point Q 6= P ∈ C, π−1(Q) consists of exactly one point (together with condition (2),

this says that π−1(C \ P )→ C \ P is an bijection).

You can envision adding a third dimension, i.e. a “z-axis”, and then stretching the curve out along
that new dimension. The resulting curve is something like a helix shape, and should now be smooth
everywhere since we have separated those two branches at the node. We will describe this method in
algebraic terms, and call it a blow-up.

2. Brief Introduction to Varieties and the Projective Line

Let R[x, y] denote the ring of polynomials in the indeterminates x, y with coefficients in R. Given
a polynomial f ∈ R[x, y], we can ask what its vanishing locus is, i.e. {(a, b) ∈ A2 : f(a, b) = 0}. This
will define a subset of A2, which for our purposes will be called a variety. More formally, given any
finite collection of polynomials f1, . . . , fr ∈ R[x, y], an affine variety in A2 is

V (f1, . . . , fr) := {(a, b) ∈ A2 : f1(a, b) = · · · = fr(a, b) = 0}.
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The variety V (x, y) is simply the origin (0, 0) in A2. The variety V (x2 − y) is the set of points
{(a, a2) : a ∈ R}, which corresponds to the standard parabola. The affine plane A2 is itself a variety,
since it can be viewed as V (0), where 0 is the zero polynomial in R[x, y]. If X,Y are varieties and
X ⊂ Y , we say X is a subvariety of Y . Hence every variety in A2 is a subvariety of A2. If f, g are
polynomials, then V (f, g) is a subvariety of V (f).

For our purposes, a variety of the form V (f) will determine a curve. Hence when f = y2 − x3 − x2
in our motivating example, we in fact saw that C = V (f) was a curve. If f, g are “different enough”
polynomials, meaning one is not a multiple of the other, then V (f, g) should consist of finitely many
points, namely the points of intersection of V (f) and V (g). For example, V (x2−y, y−4) consists of the
points (2, 4) and (−2, 4), which is where the curves x2−y = 0 and y−4 = 0 intersect. In general, if f, g
are “different enough” polynomials, then A2 is two-dimensional, the curve V (f) is a one-dimensional
subvariety of A2, and the finitely-many points in V (f, g) is a zero-dimensional subvariety of A2. Every
time we add a “different enough” polynomial, the dimension goes down by one.

We will also need to know about the projective line. We will define this to be

P1 := (A2 \ {(0, 0)})/ ∼
where (a, b) ∼ (c, d) if and only if there is a nonzero constant λ ∈ C such that (c, d) = (λa, λb). So for
example, (2, 32 ) ∼ (4, 3), hence they define the same point in P1. To notationally distinguish points

in P1 and points in A2, we will write (a : b) ∈ P1 to denote the equivalence class of (a, b) ∈ A2. Note
also that there is no such thing as the point (0 : 0) in the projective line; there is always at least one
nonzero coordinate in every projective point.

Suppose (a : b) ∈ P1. One of a, b must be nonzero. If a 6= 0, then we may assume a = 1 (since we
can multiply by the appropriate scaling factor to make a = 1) and then b is free to be any value in
R. If a = 0, then it must be the case that b 6= 0, so by similar reasoning b = 1. Hence we obtain the
following points:

P1 = {(1 : b) : b ∈ R} ∪ {(0 : 1)}.
Note that P1 “looks like” the real line R with an added point, which we call the “point at infinity”.
Hence we can interpret P1 as a “compactification” of the real line obtained by adding this point at
infinity.

We can also think of P1 as being the space that parametrizes all of the lines in A2 through the
origin. Two points (a, b), (c, d) ∈ A2 are equivalent in P1 if they differ by a scaling factor; equivalently
b

a
=
d

c
. Hence points which are equivalent lie on the same line through the origin in A2, since the

slope is constant. If they are represented by the point (1 : b) ∈ P1, then this corresponds to all points
on the line y = bx in A2. In particular, (1 : 0) corresponds to the x-axis. If they are represented by
the point (0 : 1) ∈ P1, then this corresponds to the y-axis, as this has “no slope”.

3. Blow-Up of A2 at the Origin

The most straightforward example of a blow-up is the blow-up of A2 at the origin (0, 0). As we noted
earlier, this is the subvariety V (x, y). Let’s now consider A2×P1. Think of this as just P1-many copies
of A2 stacked on top of each other. Points in A2×P1 are of the form ((a, b), (c : d)), where (a, b) ∈ A2

and (c : d) ∈ P1. We will let x, y denote the indeterminates for points in A2 (i.e. if (a, b) ∈ A2, then
a is the x-coordinate and b is the y-coordinate), and let z, w denote the indeterminates for points in
P1 (i.e. if (c : d) ∈ P1, then c is the z-coordinate and d is the w-coordinate).

Consider the variety X = V (xw − yz) ⊂ A2 × P1. What points are contained in this variety?
They firstly should be of the form ((a, b), (c : d)), but moreover these coordinates must satisfy the
polynomial relation

ad = bc.

We consider several cases depending on the values of a, b.

Case 1: Suppose a, b 6= 0. Then d =
bc

a
. Note that if c = 0, then this implies d = 0, contradicting

(c : d) being a point in P1. So c 6= 0, and since this is a projective coordinate, we may assume c = 1.
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Thus d =
b

a
. So for each a, b 6= 0, we obtain a point in X of the form

(
(a, b),

(
1 :

b

a

))
. Note that

b

a
is the slope of the line through the origin and (a, b).

Case 2: Suppose a 6= 0 but b = 0. Then ad = 0; since a 6= 0, this means d = 0, but this then forces
c 6= 0, hence c = 1. So for each a 6= 0, we obtain the point ((a, 0), (1 : 0)) ∈ X.

Case 3: Suppose a = 0 but b 6= 0. Then bc = 0; since b 6= 0, this means c = 0, but this then forces
d 6= 0, hence d = 1. So for each b 6= 0, we obtain the point ((0, b), (0 : 1)) ∈ X.

Case 4: Suppose a = b = 0. Then the polynomial equation is trivially reduced to 0 = 0, and there
are no restrictions on (c : d). So we obtain {((0, 0), (1 : d)) : d ∈ R} ∪ {((0, 0), (0 : 1))} ⊂ X.

Now consider the projection map π from X to A2, given by

π : X ⊂ A2 × P1 → A2

((a, b), (c : d)) 7→ (a, b).

Given a point (a, b) ∈ A2, what is its preimage π−1((a, b))? Well, based on our computation above,
over each point (a, b) 6= (0, 0), there was a unique point in X, so π is a bijection outside of the origin.
However, over the origin, we obtained an entire P1-worth of points.

The picture to have in mind looks like this. Envision the P1 in the vertical direction. At (1 : 0) ∈ P1,
we have all the points in Case 2; the points in the plane are of the form (a, 0), i.e. the x-axis. At
(0 : 1) ∈ P1, i.e. the point at infinity, we have the points in Case 3; the points in the plane are of the
form (0, b), i.e the y-axis. At (1 : d) ∈ P1 with d 6= 0, we have all the points in Case 1; the points

in the plane are of the form (a, b) where
b

a
= d; these are all points on the same line through the

origin, as they all have that same slope d. So in effect P1 is (once again) parametrizing the different
slopes through the origin, but this time carrying with it that entire line in A2, creating a spiral of lines
rotating once fully around a “backbone” of a P1. This P1 “backbone” lies entirely over the origin.
Another cool thing to notice: this resulting variety is the Möbius strip!

Figure 1. The blow-up of A2 at the origin.
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We call X the blow-up of A2 at the origin, often denoted Bl(0,0)A2. We call (0, 0) the center of

the blow-up. The blow-up comes equipped with the surjective projection map π : Bl(0,0)A2 → A2.

Note that π−1(A2 \ {(0, 0)}) → A2 \ {(0, 0)} is a bijection. Note also that the blow-up is virtually
identical to A2, except that the codimension-2 subvariety which was the origin was now replaced with
a codimension-1 subvariety in bijection with P1. We call π−1((0, 0)) ∼= P1 the exceptional divisor of
the blow-up, which we will denote by E.

4. Using Blow-Ups to Resolve Singularities

We return to our motivating example, where our singular curve C was given by V (y2 − x3 − x2).
Recall that P1 parametrizes slopes. If we think of drawing tangent lines as we move around the curve,
we get different slopes. In fact, at the origin, there are two tangent lines, namely y = x and y = −x.
Every other (smooth) point on C has one tangent line.

We know how to blow-up A2 at the origin, and coincidentally the origin is where C has a singularity.
If we consider the preimage of C ⊂ A2 under the map π : Bl(0,0)A2 → A2, then we should hope that
this preimage contains a smooth version of C.

So, which points ((a, b), (c : d)) ∈ Bl(0,0)A2 are in π−1(C)? Being in the blow-up, these points must
satisfy the relation ad− bc = 0. Moreover, they must also project onto the curve C, so they must also
satisfy b2 − a3 − a2 = 0. In other words, we need to solve the system of equations

xw − yz = 0

y2 − x3 − x2 = 0.

We will restrict our attention to the points whose P1-coordinates are of the form (1 : d). Then
z 6= 0 (i.e. z = 1), so our first equation is reduced to y = xw. Think of this as a change of variables,
so that in this portion of the blow-up, the only two variables governing the two-dimensional space are
x and w. We can substitute this into the second equation to get

(xw)2 − x3 − x2 = 0

x2w2 − x3 − x2 = 0

x2(w2 − x− 1) = 0.

Keep in mind that the coordinate w corresponds to the value d in the projective point (1 : d), so w
tells us where along the vertical P1 direction our point is. So when is this equation satisfied? When
either x = 0, or when w2− x− 1 = 0. If ((a, b), (c : d)) satisfies x = 0, then a = 0, but then also b = 0
since y = xw. Also c = 1 since z 6= 0, so we get points of the form ((0, 0), (1 : d)) for each d ∈ R. This
is precisely the P1 “backbone” of the blow-up, i.e. the exceptional divisor E. The second equation
gives us the parabola x = w2 − 1. Note that this intersects the exceptional divisor x = 0 when w = 1
and w = −1.

Hence π−1(C) consists of two components: the exceptional divisor E, and what we will call the

strict transform C̃, which is given by V (f̃), where f̃ = w2 − x − 1. Note that C̃ is smooth: we can
verify that the Jacobian matrix [

∂f̃

∂x

∂f̃

∂w

]
=

[
−1 2w

]
will always have rank 1, so every point is smooth. If we restrict π to be the map C̃ → C, we see
that π−1(C \ P )→ C \ P is still a bijection; the preimage of (0, 0) consists of two points, so it is not
a bijection here. These preimage points are ((0, 0), (1 : 1)) and ((0, 0), (1 : −1)), and the projective
coordinates correspond to the lines y = x and y = −x, which were exactly the tangent lines we
expected! So therefore the strict transform C̃, together with the projection map from the blow-up,
precisely gives us a resolution of the singularity of C.

Let us try another example. Let D = V (g) ⊂ A2 where g = y2 − x3. Checking the Jacobian[
∂g

∂x

∂g

∂y

]
=

[
−3x2 2y

]
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Figure 2. The strict transforms when blowing up y2 − x3 − x2 and y2 − x3.

we again see that this is smooth at all points except for the origin. We hope to resolve the singularity
by looking at the preimage of D under the blow-up. Before we do that, let us use some geometric
intuition. If we look at tangent lines, the curve D will only have one tangent line at the origin, and this
is precisely the x-axis. So we should expect π−1(D) = E ∪ D̃, where these two components intersect
at the point ((0, 0), (1 : 0)), as this projective point corresponds to the x-axis.

In fact, π−1(D) consists of all the points ((a, b), (c : d)) satisfying the equations

xw − yz = 0

y2 − x3 = 0.

We can again only look at the projective points of the form (1 : d), so that z = 1. Again y = xw in
this portion of the blow-up, so our second equation becomes

(xw)2 − x3 = 0

x2w2 − x3 = 0

x2(w2 − x) = 0.

The points satisfying this equation must satisfy either x = 0 (which again gives us the exceptional
divisor) or the points satisfying w2 − x = 0, which is the standard parabola. Note that this intersects
x = 0 precisely when w = 0, i.e. at the point ((0, 0), (1 : 0)), confirming our intuition earlier.

Thus π−1(D) = E ∪ D̃, where D̃ is the strict transform given by V (g̃), where g̃ = w2 − x. We can
easily check that this is a smooth curve, so once again we have resolved the singularity of D.

For one last example, consider the curve V (y2−x5), which will once again be singular at the origin.
If we do the same type of computation, we see that in the portion of the blow-up where y = xw, we
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obtain the following curve:

(xw)2 − x5 = 0

x2w2 − x5 = 0

x2(w2 − x3) = 0.

Again x = 0 will give us the exceptional divisor E, but now the strict transform is given by the
equation w2 − x3, which we just saw was singular at the origin. The blow-up didn’t resolve the
singularity! But, we just saw that a blow-up can resolve the singularity on this curve, so we didn’t
entirely fail; it simply takes two total blow-ups to resolve the singularity at y2− x5. This leads to the
more general, and incredibly valuable theorem: any curve singularity can be resolved in finitely many
successive blow-ups.


