A "CRASH" COURSE ON BLOW-UPS

CHRISTOPHER GUEVARA

ABSTRACT. Blow-ups are useful tools in algebraic geometry. We will look at one specific yet common example, namely the blow-up of the affine plane at the origin. The result is a space which is isomorphic to the affine plane, except at the origin; the origin is replaced with a projective line. We will see that blow-ups are primarily useful in resolving (i.e. smoothing) singularities, in this case those on curves in the plane. We will assume no prerequisite knowledge in algebraic geometry.

1. MOTIVATION

For this talk, we will work over the real numbers. Let the affine plane be

$$\mathbb{A}^2 := \{(a,b) : a, b \in \mathbb{R}\}$$

This is essentially \mathbb{R}^2 , we just use different notation so as not to confuse with the two-dimensional real vector space (i.e. we forget the vector space structure). Let $f = y^2 - x^3 - x^2$, and consider the curve $C \subset \mathbb{A}^2$ given by the points satisfying the equation f = 0. By looking at its graph, we would agree that the curve is not smooth at the origin P = (0,0), because two different branches intersect there and form a *node*. One way to verify this is via the Jacobian (which you may be familiar with from differential geometry). Consider the matrix

$$\begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} -3x^2 - 2x & 2y \end{bmatrix}.$$

A point $(a, b) \in C$ will be smooth if this matrix, when evaluated at the point (a, b), has rank at least 2-1=1, where the 2 is the dimension of the ambient plane we are in, and 1 is the codimension of the point in the curve C. If $(a, b) \neq (0, 0)$, then one of the coordinates is nonzero, so one of the entries in the matrix is nonzero, thereby giving it rank 1. So C is smooth at all of these points. However, at the origin, this matrix has no rank, so it is not smooth here. We call this point *singular*, or a *singularity*.

Ideally, we want to smooth this curve, or *resolve* its singularity. To be more precise, what we want is a map $\pi : \tilde{C} \to C$, such that

- (1) \tilde{C} is a smooth curve (i.e. smooth at all points),
- (2) π is surjective,
- (3) at every point $Q \neq P \in C$, $\pi^{-1}(Q)$ consists of exactly one point (together with condition (2), this says that $\pi^{-1}(C \setminus P) \to C \setminus P$ is an bijection).

You can envision adding a third dimension, i.e. a "z-axis", and then stretching the curve out along that new dimension. The resulting curve is something like a helix shape, and should now be smooth everywhere since we have separated those two branches at the node. We will describe this method in algebraic terms, and call it a *blow-up*.

2. Brief Introduction to Varieties and the Projective Line

Let $\mathbb{R}[x, y]$ denote the ring of polynomials in the indeterminates x, y with coefficients in \mathbb{R} . Given a polynomial $f \in \mathbb{R}[x, y]$, we can ask what its *vanishing locus* is, i.e. $\{(a, b) \in \mathbb{A}^2 : f(a, b) = 0\}$. This will define a subset of \mathbb{A}^2 , which for our purposes will be called a variety. More formally, given any finite collection of polynomials $f_1, \ldots, f_r \in \mathbb{R}[x, y]$, an *affine variety in* \mathbb{A}^2 is

$$V(f_1, \dots, f_r) := \{(a, b) \in \mathbb{A}^2 : f_1(a, b) = \dots = f_r(a, b) = 0\}$$

The variety V(x, y) is simply the origin (0, 0) in \mathbb{A}^2 . The variety $V(x^2 - y)$ is the set of points $\{(a, a^2) : a \in \mathbb{R}\}$, which corresponds to the standard parabola. The affine plane \mathbb{A}^2 is itself a variety, since it can be viewed as V(0), where 0 is the zero polynomial in $\mathbb{R}[x, y]$. If X, Y are varieties and $X \subset Y$, we say X is a subvariety of Y. Hence every variety in \mathbb{A}^2 is a subvariety of \mathbb{A}^2 . If f, g are polynomials, then V(f, g) is a subvariety of V(f).

For our purposes, a variety of the form V(f) will determine a *curve*. Hence when $f = y^2 - x^3 - x^2$ in our motivating example, we in fact saw that C = V(f) was a curve. If f, g are "different enough" polynomials, meaning one is not a multiple of the other, then V(f, g) should consist of finitely many points, namely the points of intersection of V(f) and V(g). For example, $V(x^2-y, y-4)$ consists of the points (2, 4) and (-2, 4), which is where the curves $x^2 - y = 0$ and y - 4 = 0 intersect. In general, if f, gare "different enough" polynomials, then \mathbb{A}^2 is two-dimensional, the curve V(f) is a one-dimensional subvariety of \mathbb{A}^2 , and the finitely-many points in V(f, g) is a zero-dimensional subvariety of \mathbb{A}^2 . Every time we add a "different enough" polynomial, the dimension goes down by one.

We will also need to know about the projective line. We will define this to be

$$\mathbb{P}^1 := (\mathbb{A}^2 \setminus \{(0,0)\}) / \sim$$

where $(a, b) \sim (c, d)$ if and only if there is a nonzero constant $\lambda \in \mathbb{C}$ such that $(c, d) = (\lambda a, \lambda b)$. So for example, $(2, \frac{3}{2}) \sim (4, 3)$, hence they define the same point in \mathbb{P}^1 . To notationally distinguish points in \mathbb{P}^1 and points in \mathbb{A}^2 , we will write $(a : b) \in \mathbb{P}^1$ to denote the equivalence class of $(a, b) \in \mathbb{A}^2$. Note also that there is no such thing as the point (0 : 0) in the projective line; there is always at least one nonzero coordinate in every projective point.

Suppose $(a : b) \in \mathbb{P}^1$. One of a, b must be nonzero. If $a \neq 0$, then we may assume a = 1 (since we can multiply by the appropriate scaling factor to make a = 1) and then b is free to be any value in \mathbb{R} . If a = 0, then it must be the case that $b \neq 0$, so by similar reasoning b = 1. Hence we obtain the following points:

$$\mathbb{P}^1 = \{ (1:b) : b \in \mathbb{R} \} \cup \{ (0:1) \}.$$

Note that \mathbb{P}^1 "looks like" the real line \mathbb{R} with an added point, which we call the "point at infinity". Hence we can interpret \mathbb{P}^1 as a "compactification" of the real line obtained by adding this point at infinity.

We can also think of \mathbb{P}^1 as being the space that parametrizes all of the lines in \mathbb{A}^2 through the origin. Two points $(a, b), (c, d) \in \mathbb{A}^2$ are equivalent in \mathbb{P}^1 if they differ by a scaling factor; equivalently $\frac{b}{a} = \frac{d}{c}$. Hence points which are equivalent lie on the same line through the origin in \mathbb{A}^2 , since the slope is constant. If they are represented by the point $(1:b) \in \mathbb{P}^1$, then this corresponds to all points on the line y = bx in \mathbb{A}^2 . In particular, (1:0) corresponds to the x-axis. If they are represented by the point $(0:1) \in \mathbb{P}^1$, then this corresponds to the y-axis, as this has "no slope".

3. Blow-Up of \mathbb{A}^2 at the Origin

The most straightforward example of a blow-up is the blow-up of \mathbb{A}^2 at the origin (0, 0). As we noted earlier, this is the subvariety V(x, y). Let's now consider $\mathbb{A}^2 \times \mathbb{P}^1$. Think of this as just \mathbb{P}^1 -many copies of \mathbb{A}^2 stacked on top of each other. Points in $\mathbb{A}^2 \times \mathbb{P}^1$ are of the form ((a, b), (c : d)), where $(a, b) \in \mathbb{A}^2$ and $(c : d) \in \mathbb{P}^1$. We will let x, y denote the indeterminates for points in \mathbb{A}^2 (i.e. if $(a, b) \in \mathbb{A}^2$, then a is the x-coordinate and b is the y-coordinate), and let z, w denote the indeterminates for points in \mathbb{P}^1 (i.e. if $(c : d) \in \mathbb{P}^1$, then c is the z-coordinate and d is the w-coordinate).

Consider the variety $X = V(xw - yz) \subset \mathbb{A}^2 \times \mathbb{P}^1$. What points are contained in this variety? They firstly should be of the form ((a, b), (c : d)), but moreover these coordinates must satisfy the polynomial relation

ad = bc.

We consider several cases depending on the values of a, b.

Case 1: Suppose $a, b \neq 0$. Then $d = \frac{bc}{a}$. Note that if c = 0, then this implies d = 0, contradicting (c:d) being a point in \mathbb{P}^1 . So $c \neq 0$, and since this is a projective coordinate, we may assume c = 1.

Thus $d = \frac{b}{a}$. So for each $a, b \neq 0$, we obtain a point in X of the form $\left((a, b), \left(1 : \frac{b}{a}\right)\right)$. Note that $\frac{b}{a}$ is the slope of the line through the origin and (a, b).

Case 2: Suppose $a \neq 0$ but b = 0. Then ad = 0; since $a \neq 0$, this means d = 0, but this then forces $c \neq 0$, hence c = 1. So for each $a \neq 0$, we obtain the point $((a, 0), (1 : 0)) \in X$.

Case 3: Suppose a = 0 but $b \neq 0$. Then bc = 0; since $b \neq 0$, this means c = 0, but this then forces $d \neq 0$, hence d = 1. So for each $b \neq 0$, we obtain the point $((0, b), (0 : 1)) \in X$.

Case 4: Suppose a = b = 0. Then the polynomial equation is trivially reduced to 0 = 0, and there are no restrictions on (c:d). So we obtain $\{((0,0), (1:d)) : d \in \mathbb{R}\} \cup \{((0,0), (0:1))\} \subset X$.

Now consider the projection map π from X to \mathbb{A}^2 , given by

$$\pi: X \subset \mathbb{A}^2 \times \mathbb{P}^1 \to \mathbb{A}^2$$
$$((a, b), (c: d)) \mapsto (a, b)$$

Given a point $(a, b) \in \mathbb{A}^2$, what is its preimage $\pi^{-1}((a, b))$? Well, based on our computation above, over each point $(a, b) \neq (0, 0)$, there was a unique point in X, so π is a bijection outside of the origin. However, over the origin, we obtained an entire \mathbb{P}^1 -worth of points.

The picture to have in mind looks like this. Envision the \mathbb{P}^1 in the vertical direction. At $(1:0) \in \mathbb{P}^1$, we have all the points in Case 2; the points in the plane are of the form (a, 0), i.e. the *x*-axis. At $(0:1) \in \mathbb{P}^1$, i.e. the point at infinity, we have the points in Case 3; the points in the plane are of the form (0, b), i.e the *y*-axis. At $(1:d) \in \mathbb{P}^1$ with $d \neq 0$, we have all the points in Case 1; the points in the plane are of the form (a, b) where $\frac{b}{a} = d$; these are all points on the same line through the origin, as they all have that same slope *d*. So in effect \mathbb{P}^1 is (once again) parametrizing the different slopes through the origin, but this time carrying with it that entire line in \mathbb{A}^2 , creating a spiral of lines rotating once fully around a "backbone" of a \mathbb{P}^1 . This \mathbb{P}^1 "backbone" lies entirely over the origin. Another cool thing to notice: this resulting variety is the Möbius strip!

FIGURE 1. The blow-up of \mathbb{A}^2 at the origin.

CHRISTOPHER GUEVARA

We call X the blow-up of \mathbb{A}^2 at the origin, often denoted $\mathrm{Bl}_{(0,0)}\mathbb{A}^2$. We call (0,0) the center of the blow-up. The blow-up comes equipped with the surjective projection map $\pi : \mathrm{Bl}_{(0,0)}\mathbb{A}^2 \to \mathbb{A}^2$. Note that $\pi^{-1}(\mathbb{A}^2 \setminus \{(0,0)\}) \to \mathbb{A}^2 \setminus \{(0,0)\}$ is a bijection. Note also that the blow-up is virtually identical to \mathbb{A}^2 , except that the codimension-2 subvariety which was the origin was now replaced with a codimension-1 subvariety in bijection with \mathbb{P}^1 . We call $\pi^{-1}((0,0)) \cong \mathbb{P}^1$ the exceptional divisor of the blow-up, which we will denote by E.

4. USING BLOW-UPS TO RESOLVE SINGULARITIES

We return to our motivating example, where our singular curve C was given by $V(y^2 - x^3 - x^2)$. Recall that \mathbb{P}^1 parametrizes slopes. If we think of drawing tangent lines as we move around the curve, we get different slopes. In fact, at the origin, there are two tangent lines, namely y = x and y = -x. Every other (smooth) point on C has one tangent line.

We know how to blow-up \mathbb{A}^2 at the origin, and coincidentally the origin is where C has a singularity. If we consider the preimage of $C \subset \mathbb{A}^2$ under the map $\pi : \mathrm{Bl}_{(0,0)}\mathbb{A}^2 \to \mathbb{A}^2$, then we should hope that this preimage contains a smooth version of C.

So, which points $((a, b), (c : d)) \in Bl_{(0,0)} \mathbb{A}^2$ are in $\pi^{-1}(C)$? Being in the blow-up, these points must satisfy the relation ad - bc = 0. Moreover, they must also project onto the curve C, so they must also satisfy $b^2 - a^3 - a^2 = 0$. In other words, we need to solve the system of equations

$$xw - yz = 0$$
$$y^2 - x^3 - x^2 = 0.$$

We will restrict our attention to the points whose \mathbb{P}^1 -coordinates are of the form (1 : d). Then $z \neq 0$ (i.e. z = 1), so our first equation is reduced to y = xw. Think of this as a change of variables, so that in this portion of the blow-up, the only two variables governing the two-dimensional space are x and w. We can substitute this into the second equation to get

$$(xw)^{2} - x^{3} - x^{2} = 0$$
$$x^{2}w^{2} - x^{3} - x^{2} = 0$$
$$x^{2}(w^{2} - x - 1) = 0.$$

Keep in mind that the coordinate w corresponds to the value d in the projective point (1:d), so w tells us where along the vertical \mathbb{P}^1 direction our point is. So when is this equation satisfied? When either x = 0, or when $w^2 - x - 1 = 0$. If ((a, b), (c:d)) satisfies x = 0, then a = 0, but then also b = 0 since y = xw. Also c = 1 since $z \neq 0$, so we get points of the form ((0, 0), (1:d)) for each $d \in \mathbb{R}$. This is precisely the \mathbb{P}^1 "backbone" of the blow-up, i.e. the exceptional divisor E. The second equation gives us the parabola $x = w^2 - 1$. Note that this intersects the exceptional divisor x = 0 when w = 1 and w = -1.

Hence $\pi^{-1}(C)$ consists of two components: the exceptional divisor E, and what we will call the strict transform \tilde{C} , which is given by $V(\tilde{f})$, where $\tilde{f} = w^2 - x - 1$. Note that \tilde{C} is smooth: we can verify that the Jacobian matrix

$$\begin{bmatrix} \frac{\partial \tilde{f}}{\partial x} & \frac{\partial \tilde{f}}{\partial w} \end{bmatrix} = \begin{bmatrix} -1 & 2w \end{bmatrix}$$

will always have rank 1, so every point is smooth. If we restrict π to be the map $\tilde{C} \to C$, we see that $\pi^{-1}(C \setminus P) \to C \setminus P$ is still a bijection; the preimage of (0,0) consists of two points, so it is not a bijection here. These preimage points are ((0,0),(1:1)) and ((0,0),(1:-1)), and the projective coordinates correspond to the lines y = x and y = -x, which were exactly the tangent lines we expected! So therefore the strict transform \tilde{C} , together with the projection map from the blow-up, precisely gives us a resolution of the singularity of C.

Let us try another example. Let $D = V(g) \subset \mathbb{A}^2$ where $g = y^2 - x^3$. Checking the Jacobian

$$\begin{bmatrix} \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix} = \begin{bmatrix} -3x^2 & 2y \end{bmatrix}$$

FIGURE 2. The strict transforms when blowing up $y^2 - x^3 - x^2$ and $y^2 - x^3$.

we again see that this is smooth at all points except for the origin. We hope to resolve the singularity by looking at the preimage of D under the blow-up. Before we do that, let us use some geometric intuition. If we look at tangent lines, the curve D will only have one tangent line at the origin, and this is precisely the x-axis. So we should expect $\pi^{-1}(D) = E \cup \tilde{D}$, where these two components intersect at the point ((0,0), (1:0)), as this projective point corresponds to the x-axis.

In fact, $\pi^{-1}(D)$ consists of all the points ((a, b), (c : d)) satisfying the equations

$$xw - yz = 0$$
$$y^2 - x^3 = 0.$$

We can again only look at the projective points of the form (1 : d), so that z = 1. Again y = xw in this portion of the blow-up, so our second equation becomes

$$(xw)^2 - x^3 = 0$$

 $x^2w^2 - x^3 = 0$
 $x^2(w^2 - x) = 0.$

The points satisfying this equation must satisfy either x = 0 (which again gives us the exceptional divisor) or the points satisfying $w^2 - x = 0$, which is the standard parabola. Note that this intersects x = 0 precisely when w = 0, i.e. at the point ((0,0), (1:0)), confirming our intuition earlier.

Thus $\pi^{-1}(D) = E \cup \tilde{D}$, where \tilde{D} is the strict transform given by $V(\tilde{g})$, where $\tilde{g} = w^2 - x$. We can easily check that this is a smooth curve, so once again we have resolved the singularity of D.

For one last example, consider the curve $V(y^2 - x^5)$, which will once again be singular at the origin. If we do the same type of computation, we see that in the portion of the blow-up where y = xw, we obtain the following curve:

$$(xw)^{2} - x^{5} = 0$$
$$x^{2}w^{2} - x^{5} = 0$$
$$x^{2}(w^{2} - x^{3}) = 0.$$

Again x = 0 will give us the exceptional divisor E, but now the strict transform is given by the equation $w^2 - x^3$, which we just saw was singular at the origin. The blow-up didn't resolve the singularity! But, we just saw that a blow-up can resolve the singularity on this curve, so we didn't entirely fail; it simply takes two total blow-ups to resolve the singularity at $y^2 - x^5$. This leads to the more general, and incredibly valuable theorem: any curve singularity can be resolved in finitely many successive blow-ups.