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Abstract. We address the problem of computing the moduli space which parametrizes subalge-

bras of a finite direct sum of formal power series rings in one variable over an algebraically closed

field, which are of a fixed finite codimension as vector spaces over that field. This moduli space
is a projective scheme and contains a connected closed subscheme called the glued territory which

parametrizes the glued subalgebras, those which arise as complete local rings at curve singularities.

As such, the glued territory equivalently parametrizes the different ways a singularity with fixed
delta-invariant and branch number can be attached to a smooth curve. It also has tremendous util-

ity in describing the moduli of all singular curves. Using Goursat’s Lemma, we define a stratification
of the glued territory, in which each component is a relative Isom scheme over a product of relative

punctual Hilbert schemes. This stratification allows us to not only prove some results about the

geometry of the glued territory, but also provides a recursive method for computing these moduli
spaces explicitly.
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1. Introduction

Let k be an algebraically closed field. Fix natural numbers δ,m such that m ≥ 1. The goal of
this paper is to construct the moduli space of k-subalgebras of the direct sum

⊕m
i=1 k[[ti]] which are

δ-codimensional as k-vector spaces. This moduli space will be called the δ-territory of
⊕m

i=1 k[[ti]],
and we will denote it as

terδ(m) =

{
k-subalgebras S ⊂

m⊕
i=1

k[[ti]] : dimk

(
m⊕
i=1

k[[ti]]

)/
S = δ

}
.

The motivation for examining this moduli space comes from curve singularities. Let C be a reduced
curve over Spec k, and let ν : C̃ → C be its normalization. The number of branches at P is |ν−1(P )|.
If P has m branches, then the complete local ring ÔC,P of C at P can be identified with a k-subalgebra
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δ
m

1 2 3 4 · · ·

1 ter1(1) ter1
G(2)

(Ex 1.9) (Thm 2.13)

2 ter2(1) ter2
G(2) ter2

G(3)
(Ex 1.10) (Prop 4.4) (Thm 2.13)

3 ter3(1) ter3
G(2) ter3

G(3) ter3
G(4)

(Ex 1.11) (Ex 5.3) (Prop 4.4) (Thm 2.13)

...
...

...
...

...
. . .

Table 1.

of
⊕m

i=1 k[[ti]]. The delta-invariant at P is the finite quantity

dimk(ν∗OC̃)P /OC,P = dimk

(
m⊕
i=1

k[[ti]]

)/
ÔC,P .

Hence if P has delta-invariant δ, then ÔC,P belongs to terδ(m).
Little is known about the “multibranch” δ-territories (i.e. when m ≥ 2), whereas the “unibranch”

case (m = 1) has been more extensively studied, most notably by Ishii in [Ish80] and Hamilton in
[Ham19]. In [Ish80], the δ-territory is viewed as the representing scheme of a functor, and terδ(1) is
given a stratification by affine varieties according to numerical semigroups. In [Ham19], an algorithm
is provided to compute the polynomial equations defining these affine varieties.

Any k-subalgebra in terδ(1) can be obtained as the complete local ring at a unibranch singularity.
Unfortunately, the same is not true for m ≥ 2; take, for instance, k[[t1]]⊕k[[t22, t

3
2]] ∈ ter1(2). Not only

is this k-subalgebra not local, but its spectrum is disconnected, and would geometrically correspond
to the disjoint union of a smooth branch and a cuspidal branch. We will restrict our attention to the
k-subalgebras which do in fact arise as complete local rings at m-branch singularities, which will be
referred to as glued subalgebras. We call the subset terδG(m) consisting of the glued subalgebras of

terδ(m) the glued territory.
It turns out that the glued territory encodes the different ways that an m-branch singularity with

delta-invariant δ can be attached to a smooth point on a curve. In this way, the glued territory
has tremendous utility in constructing global moduli of singular curves. Ishii uses her results about
terδ(1) in a subsequent paper [Ish82] to construct a global moduli of singular curves with unibranch
singularities. Our goal in this paper and in future work is to expand upon these results to construct
more explicitly the moduli of all curves.

One immediate application is in describing stable modular compactifications ofMg,n. As shown in

[Smy09], such compactifications are obtained by extremal assignments. For example, in Mg,1, with
g ≥ 1, there is the extremal assignment Zun which assigns to each stable curve C the subcurve Zun(C)
consisting of all unmarked components. A Zun-stable curve can be obtained from C by replacing each
connected component Ci of Zun(C) with a singularity with mi branches, where mi is number of
intersection points of Ci with the marked component, and with delta-invariant pa(Ci) +mi − 1. The
compactification Mg,1(Zun) obtained from this extremal assignment will therefore consist of various
glued territory bundles over the boundary strata.

In fact, to determineMg,1(Zun), it is necessary to know all glued territories terδG(m), where m−1 ≤
δ ≤ g and m ≤ g + 1. Hence if we arrange all the glued territories by δ and m as in Table 1, then
we would need to know all entries up to and including the gth row. This table provides the theorem,
proposition, or example in which the corresponding glued territory is computed. Based solely on the
computations in this paper, we could describe M3,1(Zun).
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In the rest of this section we show that the δ-territory can be embedded into a Grassmannian variety
as a closed subvariety, guaranteeing that this moduli space is in fact a projective k-scheme. We also
review the relevant results from [Ish80] and [Ham19] for the unibranch case. In Section 2, we review
Goursat’s Lemma for k-algebras, which is essentially a recipe for building k-subalgebras of a direct
sum, with the main ingredients being k-subalgebras of the summands, ideals of those k-subalgebras,
and a k-algebra isomorphism between the resulting quotients. Since the territories of k[[t]] are known,
the k-subalgebras of

⊕m
i=1 k[[ti]] can therefore be recursively determined. We then formally define

glued subalgebras and the glued territory, and show that the latter is a closed subscheme of terδ(m).
In Section 3, we define a stratification of terδG(m) by Isom-Hilb components. By taking a functorial

approach to Goursat’s Lemma, the glued territory can be realized as a union of components, each of
which is the image in the Grassmannian of a scheme obtained as a relative Isom scheme over a product
of relative punctual Hilbert schemes over the glued territories of lower branch numbers. Using this,
we are required to know about punctual Hilbert schemes (which have been independently studied
for some curve singularities in [Fog68], [Lax00], [PS92], and [Ran02]), and automorphism groups of
finite-dimensional k-algebras (which have been studied in [GS94]). This stratification helps us prove
some statements about the geometry of the moduli space, including its connectedness, its irreducible
components, and its dimension, which can be found in Section 4. We also discuss how the Isom-Hilb
stratification comes with some obstructions. The Isom-Hilb stratification provides a procedure to
compute the glued territories explicitly, and we provide some examples in Section 5.

1.1. Embedding the Territory in a Grassmannian. Here we show that terδ(m) is a projective
k-scheme by viewing it as a closed subscheme of a sufficient Grassmannian variety. To do this, we first
show that there is a one-to-one correspondence between δ-codimensional k-subalgebras of

⊕m
i=1 k[[ti]]

and δ-codimensional k-subalgebras of
⊕m

i=1 k[[ti]]/(t
2δ
i ).

Proposition 1.1. If S ⊂
⊕m

i=1 k[[ti]] is a δ-codimensional k-subalgebra, then S contains the ideal
a2δ, where a = ((t1, . . . , tm)).

Proof. Let A =
⊕m

i=1 k[[ti]], and define the following gradation of k-modules: for n ∈ N, let

(A/S)n := an/((an ∩ S) + an+1)

where a0 = A. It is clear that δ = dimk A/S =
∑
n∈N dimk(A/S)n. The following fact will also

become useful: for any n, n′ ∈ N, (A/S)n = (A/S)n
′

= 0 implies (A/S)n+n′ = 0. To see that

this is true, take any f ∈ an+n′ . Then f = gh for some g ∈ an and h ∈ an
′
. By assumption,

an = (an ∩ S) + an+1 and an
′

= (an
′ ∩ S) + an

′+1, so it follows that f = gh ∈ (an+n′ ∩ S) + an+n′+1.

Hence an+n′ = (an+n′ ∩ S) + an+n′+1, and thus (A/S)n+n′ = 0.
Assume (A/S)n 6= 0 for some n ≥ 2δ. Then for any pair `, `′ such that ` + `′ = n, we must have

either (A/S)` 6= 0 or (A/S)`
′ 6= 0. We partition {1, . . . , n−1} into subsets of the form N` = {`, n− `}

for ` = 1, . . . , bn2 c. Note that if n is even, then Nbn2 c = {bn2 c}. Hence there is some n` ∈ N` such that

(A/S)n` 6= 0, so dimk(A/S)n` ≥ 1. But also dimk(A/S)n ≥ 1 by assumption, and since n ≥ 2δ, we
obtain

dimk(A/S)n +

bn2 c∑
`=1

dimk(A/S)n` ≥ 1 +
⌊n

2

⌋
≥ 1 + δ.

However this contradicts dimk A/S = δ. Therefore it must be the case that (A/S)n = 0 for all n ≥ 2δ,
but this means a2δ =

∑
n≥2δ(a

n ∩ S), which implies a2δ ⊂ S. �

Corollary 1.2. There is a one-to-one correspondence between the δ-codimensional k-subalgebras of⊕m
i=1 k[[ti]] and the δ-codimensional k-subalgebras of

⊕m
i=1 k[[ti]]/(t

2δ
i ).

We can now rephrase our moduli space in the following way:

terδ(m) =

{
k-subalgebras S ⊂

m⊕
i=1

k[[ti]]/(t
2δ
i ) : dimk

(
m⊕
i=1

k[[ti]]/(t
2δ
i )

)/
S = δ

}
.
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Observe that
⊕m

i=1 k[[ti]]/(t
2δ
i ) is Artinian, and has dimension 2δm as a k-vector space. Hence we

can consider these δ-codimensional k-subalgebras as δ-codimensional subspaces of k2δm, with a mul-
tiplicative structure.

Definition 1.3. Let Λ =
⊕m

i=1 k[[ti]]/(t
2δ
i ), let 1 = (1, . . . , 1) ∈ Λ, and let C = span{1}. Let

µ : Λ× Λ→ Λ be the multiplication map. Then we can once again redefine the moduli space as

terδ(m) = {S ∈ G(2δm− δ, 2δm) : C ⊂ S and µ(S × S) ⊂ S} .

Note that the condition C ⊂ S guarantees that the inclusion k ↪→ Λ factors through S, and the
condition µ(S × S) ⊂ S guarantees that S is closed under multiplication, so that S is in fact a
k-subalgebra of Λ.

Proposition 1.4. The moduli space terδ(m), as defined in Definition 1.3, is a projective scheme. In
particular, it is a closed subscheme of G(2δm− δ, 2δm).

Proof. The condition C ⊂ S defines a sub-Grassmannian of G = G(2δm − δ, 2δm), which can be
identified as G′ = G(2δm− δ− 1, 2δm− 1). For the second condition, we observe that µ is k-bilinear,
hence induces a map µ̃ : Λ ⊗ Λ → Λ. Let µ̃S : S ⊗ S → Λ be the restriction of µ̃ to S ⊗ S, and let
νS : Λ → Λ/S be the quotient map. Then the condition µ(S × S) ⊂ S is equivalent to νS ◦ µ̃S = 0.
If U is the universal subbundle over G, then the points of G for which this condition is satisfied will
precisely form the vanishing locus of the morphism U ⊗ U → (Λ ⊗k OG)/U . This vanishing locus
defines a closed subscheme Z of G. Thus G′ ∩ Z = terδ(m). �

1.2. Overview of the Unibranch Case. Ishii showed that terδ(1) can be stratified by affine va-
rieties, each one consisting of k-subalgebras with the same numerical semigroup. Here we review
semigroups, as well as this stratification.

Definition 1.5. A numerical semigroup Γ is a subset of N satisfying the following conditions:

(i) 0 ∈ Γ,
(ii) Γ is closed under addition, and
(iii) |N \ Γ| is finite.

The genus of a numerical semigroup Γ is the quantity g(Γ) = |N \ Γ|, and the elements of N \ Γ are
called gaps. The conductor of Γ is the unique number c for which c− 1 /∈ Γ but {c, c+ 1, . . .} ⊂ Γ.

If Γ is a numerical semigroup, we say n1, . . . , ns ∈ Γ is a generating set of Γ if every element can
be expressed as a linear combination of the form p1n1 + · · ·+ psns for some pi ∈ N. Every numerical
semigroup has a unique minimal generating set [GR09, Theorem 2.7]. If n1, . . . , ns is the minimal
generating set of Γ, then we write Γ = 〈n1, . . . , ns〉.

Observe k[[t]] is a discrete valuation ring, with valuation v : k[[t]] → N given by orders, i.e. if
f = a0 + a1t+ a2t

2 + · · · , then v(f) is the smallest i for which ai 6= 0. If S is a finite-codimensional
k-subalgebra of k[[t]], then the set

ΓS := {n ∈ N : v(f) = n for some f ∈ S \ {0}}

is a numerical semigroup. If S ∈ terδ(1), then g(ΓS) = δ. For any numerical semigroup Γ with
conductor c, we have c ≤ 2g(Γ) [GR09, Lemma 2.14]. Hence g(ΓS) = δ implies the ideal (t2δ) ⊂ k[[t]]
is contained in S, confirming Proposition 1.1 when m = 1.

If a numerical semigroup Γ is fixed, then its semigroup stratum will be the set

TΓ := {k-subalgebras S ⊂ k[[t]] : ΓS = Γ}.

If g(Γ) = δ, then TΓ ⊂ terδ(1), and in fact we have the following stratification:

terδ(1) =
⋃

g(Γ)=δ

TΓ.
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Proposition 1.6. [Ish80, Proposition 6] Let Γ = 〈n1, . . . , ns〉 ⊂ N be a numerical semigroup. Let

N =

s∑
i=1

|{g ∈ N \ Γ : g > ni}|.

Then there is a closed immersion TΓ ↪→ AN .

Corollary 1.7. [Ish80, Corollary 4] Let c be the conductor of Γ. If there are no relations among the
generators smaller than the conductor, i.e. there are no nonzero vectors (p1, . . . , ps) 6= (p′1, . . . , p

′
s) ∈

Ns such that

p1n1 + · · ·+ psns = p′1n1 + · · ·+ p′sns < c,

then TΓ
∼= AN .

Definition 1.8. For any δ, the k-subalgebra k[[tδ+1, . . . , t2δ+1]] will be called the maximum degree
subalgebra.

The numerical semigroup Γ = 〈δ + 1, . . . , 2δ + 1〉 has genus δ, since its gaps are 1, . . . , δ. Hence
the quantity N from above is zero, so TΓ = {pt}, i.e. there is a unique k-subalgebra of codimension δ
with numerical semigroup 〈δ + 1, . . . , 2δ + 1〉, and it is precisely the maximum degree subalgebra.

Example 1.9. ter1(1). There is only one semigroup of genus 1, namely 〈2, 3〉, and by above T〈2,3〉 =

{k[[t2, t3]]}. Thus ter1(1) = {pt}.

Example 1.10. ter2(1). There are two semigroups of genus 2, namely 〈2, 5〉 and 〈3, 4, 5〉, which have
conductors 4 and 3, respectively. In each semigroup, there are no relations among the generators
which are smaller than the respective conductor, so

T〈2,5〉 = {k[[t2 + at3, t5]] : a ∈ k} ∼= A1

T〈3,4,5〉 = {k[[t3, t4, t5]]} ∼= {pt}.

Since ter2(1) is a subscheme of G(2, 4), we compute the Plücker coordinates of these k-subalgebras.
For instance, an arbitrary k-subalgebra k[[t2 + at3, t5]] in T〈2,5〉 can be viewed as the 2-dimensional

k-vector subspace k{1, t2 + at3} of k{1, t, t2, t3}. The Plücker coordinates of this subspace are the
maximal minors of the matrix [

1 0 0 0
0 0 1 a

]
.

Similarly, k[[t3, t4, t5]] can be viewed as the k-subspace k{1, t3}, and its Plücker coordinates are the
maximal minors of the matrix [

1 0 0 0
0 0 0 1

]
.

Altogether, we obtain a projective line inside this Grassmannian, so therefore ter2(1) ∼= P1.

Example 1.11. ter3(1). There are four semigroups of genus 3, namely 〈2, 7〉, 〈3, 4〉, 〈3, 5, 7〉, and
〈4, 5, 6, 7〉, which have conductors 6, 6, 5, 4, respectively. Once again none of these semigroups have
relations among the generators which are smaller than their conductors. Hence

T〈2,7〉 = {k[[t2 + at3 + bt5, t7]] : a, b ∈ k} ∼= A2

T〈3,4〉 = {k[[t3 + ct5, t4 + dt5]] : c, d ∈ k} ∼= A2

T〈3,5,7〉 = {k[[t3 + et4, t5, t7]] : e ∈ k} ∼= A1

T〈4,5,6,7〉 = {k[[t4, t5, t6, t7]]} ∼= {pt}.

Again, we consider ter3(1) as a subscheme of G(3, 6) and find the Plücker coordinates of these k-
subalgebras. For instance, an arbitrary k-subalgebra k[[t2 + at3 + bt5, t7]] in T〈2,7〉 can be viewed as
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the 3-dimensional k-vector subspace k{1, t2 + at3 + bt5, t4 + 2at5} of k{1, t, t2, t3, t4, t5}. The Plücker
coordinates of this subspace are the maximal minors of the matrix1 0 0 0 0 0

0 0 1 a 0 b
0 0 0 0 1 2a


and computing them yields the affine patch x0 6= 0 on the projective quadric cone V (x0x3−x1x2, x1−
2x2) ⊂ P4. Continuing in this way, we conclude

ter3(1) ∼= P2 ∪Q

where Q is the aforementioned quadric cone with vertex point V , and P2∩Q = P1. The k-subalgebras
in T〈3,4〉 form the affine plane P2\(P2∩Q), the k-subalgebras in T〈3,5,7〉 form the affine line (P2∩Q)\V ,
and the unique k-subalgebra in T〈4,5,6,7〉 forms the vertex V .

2. The Glued Territory

For m ≥ 2, a k-subalgebra S ∈ terδ(m) also has a corresponding semigroup of orders, contained
in Nm. However, we will choose not to stratify terδ(m) by this invariant for many reasons. In the
unibranch case, the genus of the numerical semigroup Γ was equal to dimk(

⊕m
i=1 k[[ti]])/S. This is

not true for m ≥ 2, since the complements of these semigroups are rarely finite. Take, for instance,
the k-subalgebra k[[(t1, 0), (0, t2)]] ⊂ k[[t1]] ⊕ k[[t2]]. This is the complete local ring at an ordinary
node, and it has codimension 1. However, its semigroup is

Γk[[(t1,0),(0,t2)]] = {(0, 0)} ∪ {(n1, n2) ∈ N2 : n1, n2 ≥ 1}

and |N2 \ Γk[[(t1,0),(0,t2)]]| = ∞. This example also shows that these multibranch semigroups are not
necessarily finitely generated, as they were in the unibranch case.

2.1. Goursat’s Lemma. In certain categories with products, Goursat’s Lemma describes subobjects
of a product. It was initially stated in the category of groups to describe subgroups of a direct product.
In [AC09], Goursat’s Lemma was proven to hold for rings, and stated for modules. In [GM22], it was
proven to hold for modules and, consequently, algebras over a ring. We state the theorem for k-
algebras, where we assume the field k is algebraically closed.

Theorem 2.1. [GM22, Corollary 1] Let A1, A2 be k-algebras.

(i) Let S ⊂ A1 × A2 be a k-subalgebra, and let πi : A1 × A2 → Ai be the canonical projection
homomorphisms. Define

S1 := π1(S),

I1 := {s1 ∈ S1 : (s1, 0) ∈ S},
S2 := π2(S),

I2 := {s2 ∈ S2 : (0, s2) ∈ S}.

Then Si is a k-subalgebra of Ai, and Ii is an ideal of Si. Moreover, define ϕ : S1/I1 → S2/I2
by s1 + I1 7→ s2 + I2 if (s1, s2) ∈ S. Then ϕ is a k-algebra isomorphism.

(ii) Conversely, suppose S1 is a k-subalgebra of A1, I1 is an ideal of S1, S2 is a k-subalgebra of A2,
and I2 is an ideal of S2, such that there exists a k-algebra isomorphism ϕ : S1/I1 → S2/I2.
Then

S = {(s1, s2) ∈ S1 × S2 : ϕ(s1 + I1) = s2 + I2}
is a k-subalgebra of A1 ×A2.

The constructions of (i) and (ii) are inverses. Equivalently, there is a one-to-one correspondence
between k-subalgebras of A1 ×A2 and ordered quintuples of the form

(S1, I1, S2, I2, ϕ)
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where each Si is a k-subalgebra of Ai, Ii is an ideal of Si, and ϕ : S1/I1 → S2/I2 is a k-algebra
isomorphism.

Definition 2.2. If ϕ : A → B is a k-algebra isomorphism of finite-dimensional k-algebras, then the
gluing dimension of ϕ is the quantity dimk ϕ := dimk A = dimk B.

Proposition 2.3. Let S = (S1, I1, S2, I2, ϕ) be a k-subalgebra of A1 ⊕ A2. If δ = dimk(A1 ⊕ A2)/S
and δi = dimk Ai/Si then

δ = δ1 + δ2 + dimk ϕ.

Proof. By Goursat’s Lemma, S is a k-submodule of S1⊕S2. First we show that (S1⊕S2)/S ∼= S2/I2
as k-modules. Consider the k-linear map

γ : S1 ⊕ S2 → S2/I2

(s1, s2) 7→ (s2 + I2)− ϕ(s1 + I1).

By the definition of S, it is clear that (s1, s2) ∈ S if and only if ϕ(s1 + I1) = s2 + I2, if and only if
(s1, s2) ∈ ker γ. Moreover, γ is surjective, since for any coset s2 + I2, we have

γ((0, s2)) = (s2 + I2)− ϕ(0 + I1) = (s2 + I2)− (0 + I2) = s2 + I2.

Thus (S1 ⊕ S2)/S ∼= S2/I2.
The inclusion of k-modules S ⊂ S1 ⊕ S2 ⊂ A1 ⊕A2 allows us to conclude

δ = dimk(A1 ⊕A2)/S

= dimk(A1 ⊕A2)/(S1 ⊕ S2) + dimk(S1 ⊕ S2)/S

= dimk A1/S1 + dimk A2/S2 + dimk S2/I2

= δ1 + δ2 + dimk ϕ

and thus the equality is proven. �

Example 2.4. Consider the k-subalgebra k[[(t1, 0), (0, t2)]] ⊂ k[[t1]] ⊕ k[[t2]]. This is identified with
the data

(k[[t1]], (t1), k[[t2]], (t2), idk).

The quotients are k[[ti]]/(ti) ∼= k, so the isomorphism idk is completely determined by 1 7→ 1. Hence
the two-dimensional space of constants spanned by {(1, 0), (0, 1)} in k[[t1]]⊕ k[[t2]] is “glued” into the
one-dimensional space spanned by {(1, idk(1))} = {(1, 1)}. By Proposition 2.3, the codimension of
k[[(t1, 0), (0, t2)]] in k[[t1]]⊕ k[[t2]] is 1.

To construct k-subalgebras of a direct product of finitely many k-algebras A1 × · · · × Am, we can
simply invoke Goursat’s Lemma m−1 times. A direct product of three k-algebras A1×A2×A3 can be
viewed as either (A1×A2)×A3 or as A1× (A2×A3). Since these are isomorphic as k-algebras, there
is a natural bijection between k-subalgebras of (A1 ×A2)×A3 and k-subalgebras of A1 × (A2 ×A3).
This naturally extends to any finite number of k-algebras. Therefore without loss of generality, we
will use the following convention: for j ≥ 2,

A1 × · · · ×Aj := (A1 × · · · ×Aj−1)×Aj .
The following result is clear under this recursive definition. It mimics the “asymmetric” version of
Goursat’s Lemma for groups [BSZ11].

Proposition 2.5. Fix m ≥ 2, and let θj = {1, . . . , j}. There is a one-to-one correspondence between
k-subalgebras of

∏m
i=1Ai and ordered (4m− 3)-tuples of the form

(S1, I1, . . . , Sm, Im, ϕ2, Iθ2 , ϕ3, Iθ3 , . . . , Iθm−1 , ϕm)

where each Si is a k-subalgebra of Ai, Ii is an ideal of Si, and for each j ≥ 2, Sθj is the k-subalgebra

of
∏j
i=1Ai identified with the data (Sθj−1

, Iθj−1
, Sj , Ij , ϕj).

From this, we can generalize Proposition 2.3.
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Corollary 2.6. Let S be a k-subalgebra of
⊕m

i=1Ai identified with the data

(S1, I1, . . . , Sm, Im, ϕ2, Iθ2 , ϕ3, Iθ3 , . . . , Iθm−1
, ϕm).

If δ = dimk(
⊕m

i=1Ai)/S and δi = dimk Ai/Si, then

δ =

(
m∑
i=1

δi

)
+

 m∑
j=2

dimk ϕj

 .

While we still need some additional machinery to fully construct the territories of
⊕m

i=1 k[[ti]], we
have sufficient information to compute ter1(2).

Example 2.7. ter1(2). If S = (S1, I1, S2, I2, ϕ) is a k-subalgebra of k[[t1]]⊕ k[[t2]] of codimension 1,
then by Proposition 2.3,

δ1 + δ2 + dimk ϕ = 1.

Of course there are only three possible cases:

(i) δ1 = 1, δ2 = 0,dimk ϕ = 0. By Example 1.9, S1 = k[[t21, t
3
1]], and S2 = k[[t2]]. Since ϕ has

gluing dimension zero, this forces Ii = Si, so that S is the direct product of S1 and S2, hence
S = k[[t21, t

3
1]]⊕ k[[t2]].

(ii) δ1 = 0, δ2 = 1,dimk ϕ = 0. Similar to the previous case, the only k-subalgebra obtained is
S = k[[t1]]⊕ k[[t22, t

3
2]].

(iii) δ1 = 0, δ2 = 0,dimk ϕ = 1. Then Si = k[[ti]], and Ii must be an ideal of codimension 1.
But k[[ti]] is local, so Ii = (ti). There is only one choice for the k-algebra isomorphism
ϕ : S1/I1 → S2/I2, namely idk. Hence we uniquely obtain the k-subalgebra k[[(t1, 0), (0, t2)]]
from Example 2.4.

Since we have exhausted all cases, we conclude ter1(2) ∼= {pt} ∪ {pt} ∪ {pt}. This example confirms
that the multibranch territories are not necessarily connected.

2.2. Glued Subalgebras and the Glued Territory. As mentioned in the introduction, some (but
not all) of the k-subalgebras of

⊕m
i=1 k[[ti]] are complete local rings at m-branch curve singularities.

Those which are will be called glued subalgebras.

Definition 2.8. Let S be a k-subalgebra of
⊕m

i=1 k[[ti]], identified with the data

(S1, I1, . . . , Sm, Im, ϕ2, Iθ2 , ϕ3, Iθ3 , . . . , Iθm−1
, ϕm).

The k-algebra isomorphisms ϕ2, . . . , ϕm are the gluing isomorphisms of S. Let Φ(S) denote the set of
gluing isomorphisms of S. The gluing dimension of S is the quantity

gd(S) :=
m∑
j=2

dimk ϕj .

If dimk ϕ ≥ 1 for all ϕ ∈ Φ(S), we will call S a glued subalgebra.

Definition 2.9. The rational m-fold k-subalgebra +×m will refer to the local ring

k[[(t1, 0, . . . , 0), . . . , (0, . . . , 0, tm)]] ⊂
m⊕
i=1

k[[ti]]

or, depending on the context, it will also refer to the local ring

k[[(t1, 0, . . . , 0), . . . , (0, . . . , 0, tm)]]/((t1, 0 . . . , 0)2δ, . . . , (0, . . . , 0, tm)2δ) ⊂
m⊕
i=1

k[[ti]]/(t
2δ
i ).

Observe that +×m ∈ term−1(m), and is the complete local ring at the singularity with m smooth
branches intersecting transversely.

Proposition 2.10. Suppose S ∈ terδ(m). Let D = span{(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} be the subspace
of constants in

⊕m
i=1 k[[ti]]/(t

2δ
i ), and let C = span{1}. The following are equivalent:
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(i) S is glued;
(ii) S ∩D = C;

(iii) S ⊂ +×m;
(iv) S is local.

Proof. (i)⇔ (ii): Clearly C ⊂ S by virtue of S being a k-subalgebra. For any j ≥ 2, we have the gluing
isomorphism ϕj : Sθj−1

/Iθj−1
→ Sj/Ij . Since this a k-algebra isomorphism and dimk ϕj ≥ 1 by as-

sumption, ϕj(1) = 1. Thus constants are always glued in a glued subalgebra, and therefore S∩D = C.
Conversely, if dimk ϕj = 0 for some j, then S contains constants of the form (1, . . . , 1, 0, cj+1, . . . , cm)
and (0, . . . , 0, 1, c′j+1, . . . , c

′
m), so S ∩D 6⊂ C.

(ii)⇒ (iii): The only elements in
⊕m

i=1 k[[ti]]\+×m contain constant terms not in C. Hence S 6⊂ +×m
implies S ∩D 6⊂ C.

(iii) ⇒ (iv): Let m = ((t1, 0, . . . , 0), . . . , (0, . . . , 0, tm)) be the maximal ideal of +×m, and let ι :
S → +×m be the inclusion. Observe +×m is a finitely generated k-algebra, as it is isomorphic to
k[x1, . . . , xm]/(x2δ

i , xixj : i 6= j ∈ {1, . . . ,m}). Hence ι−1(m) = S ∩ m is a maximal ideal of S.
Suppose a is any proper ideal in S. Let ae be the extension of a, i.e. the ideal generated by a in +×m.
Assume ae contains a unit, f . Then the constant term of f is nonzero, and this can only occur in ae if a
contained a unit, which would be a contradiction. So ae ⊂ m, but then a ⊂ ι−1(ae) ⊂ ι−1(m) = S∩m.
Thus S is local.

(iv) ⇒ (ii): If m is the unique maximal ideal of S, then S ∼= k ⊕m as a k-module. By virtue of S
being a k-subalgebra of

⊕m
i=1 k[[ti]]/(t

2δ
i ), we have the following commutative diagram

k k ⊕m

m⊕
i=1

k[[ti]]/(t
2δ
i )

from which it follows that S ∩D = C. �

Let C1, C2 be two curves intersecting at a point P . Following the notation of [Hir57], let i(P ;C1 ·C2)
denote the intersection multiplicity of C1 and C2 at P . More generally, let i(P ;

∧m
i=1 Ci) denote the

intersection multiplicity of m curves C1, . . . , Cm at P , which can be determined by

i

(
P ;

m∧
i=1

Ci

)
=

m∑
j=2

i

(
P ;

(
j−1⋃
i=1

Ci

)
· Cj

)
.

Let C =
⋃m
i=1 Ci. Then ÔC,P is a k-subalgebra of

⊕m
i=1 k[[ti]]. If P has delta-invariant δ when viewed

as a point of C, and if P has delta-invariant δi when viewed as a point of Ci, then Hironaka showed
[Hir57, Proposition 4] that

δ =

(
m∑
i=1

δi

)
+ i

(
P ;

m∧
i=1

Ci

)
.

By our computation in Corollary 2.6, it follows that

i

(
P ;

m∧
i=1

Ci

)
= gd(S).

Therefore the gluing dimension of ÔC,P precisely measures the intersection multiplicity of C1, . . . , Cm
at P . Moreover, it is clear that as we work recursively, for each j ≥ 2,

i

(
P ;

(
j−1⋃
i=1

Ci

)
· Cj

)
= dimk ϕj

so that dimk ϕj is precisely the intersection multiplicity of the jth branch with the first j−1 branches.
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Corollary 2.11. Let C be a curve with a connected m-branch singularity P . Then ÔC,P is a glued
subalgebra of

⊕m
i=1 k[[ti]].

Definition 2.12. For m ≥ 1, the glued δ-territory of
⊕m

i=1 k[[ti]] will be the subset terδG(m) ⊂ terδ(m)
consisting of the glued subalgebras. Note that all finite-codimensional k-subalgebras of k[[t]] are glued
(by Proposition 2.10), so terδG(1) = terδ(1).

Theorem 2.13. Take m ≥ 2.

(i) If δ < m− 1, then terδG(m) = ∅.

(ii) If δ ≥ m−1, then terδG(m) is a closed subscheme of terδ(m). In particular, term−1
G (m) = {pt}.

Proof. (i) If δ < m− 1, then for any S ∈ terδ(m), gd(S) < m− 1 by Corollary 2.6. But in order for
S to be a glued subalgebra, gd(S) ≥ m− 1.

(ii) We treat the case δ = m− 1 separately. Suppose

S = (S1, I1, . . . , Sm, Im, ϕ2, Iθ2 , ϕ3, Iθ3 , . . . , Iθm−1
, ϕm)

is glued and of codimension m− 1 in
⊕m

i=1 k[[ti]]. Then by Corollary 2.6, δi = 0 and dimk ϕj = 1 for
all j ≥ 2. This forces Si = k[[ti]] and Ii = (ti), so that Si/Ii ∼= k, and ϕj = idk. It follows that S is
uniquely the rational m-fold k-subalgebra +×m.

Now suppose δ ≥ m. As before, let Λ =
⊕m

i=1 k[[ti]]/(t
2δ
i ), let D be the m-dimensional subspace

of constants, and let C = span{1}. Let Dc denote the complement of D in Λ. We know S ∈ terδ(m)
is glued if and only if S ∩D = C. This is equivalent to saying S is a δ-codimensional subspace of the
(2δm−m+ 1)-dimensional subspace C ⊕Dc. Hence S/C is a (δ − 1)-codimensional subspace of the
(2δm−m)-dimensional space (C ⊕Dc)/C. By the composition of the inclusion C ↪→ C ⊕Dc and the
quotient C⊕Dc → (C⊕Dc)/C, the sub-Grassmannian G′ = G(2δm−m− δ+1, 2δm−m) embeds as
a closed subvariety of G(2δm− δ, 2δm). It naturally follows that terδG(m) = terδ(m)∩G′, so therefore

the glued territory is a closed subscheme of terδ(m). �

3. Isom-Hilb Stratification

In what follows, a glued subalgebra S of
⊕m

i=1 k[[ti]] will be identified with the Goursat data

(S1, I1, S2, I2, ϕ), where S1 is a glued subalgebra of
⊕m−1

i=1 k[[ti]], S2 is a k-subalgebra of k[[tm]], each
Ii is an ideal of Si, and ϕ : S1/I1 → S2/I2 is a k-algebra isomorphism. The benefit of using this
quintuple of data instead of the (4m − 3)-tuple from Proposition 2.5 is that it reveals the recursive
procedure through which we can construct the glued territories.

Proposition 2.3 tells us that if (S1, I1, S2, I2, ϕ) identifies a k-subalgebra of codimension δ, then
dimk S1 + dimk S2 + dimk ϕ = δ. Moreover, if this is a glued subalgebra, then there are additional
restrictions, namely dimk S1 ≥ m− 2 and τ ≥ 1.

Definition 3.1. Fix m ≥ 2 and δ ≥ m− 1. A sufficient triple for δ,m will refer to an ordered triple
(δ1, δ2, τ) ∈ N3 satisfying the following properties:

(i) δ1 ≥ m− 1,
(ii) τ ≥ 1, and
(iii) δ1 + δ2 + τ = δ.

Let st(δ,m) denote the set of all sufficient triples for δ,m. Given a sufficient triple (δ1, δ2, τ) ∈ st(δ,m),
we say a glued subalgebra (S1, I2, S2, I2, ϕ) in terδG(m) is of type (δ1, δ2, τ) if dimk Si = δi for each i,
and dimk ϕ = τ .

We will stratify the glued territory according to these sufficient triples.

Definition 3.2. Fix m ≥ 2 and δ ≥ m − 1. For each sufficient triple (δ1, δ2, τ) ∈ stδ(m), let its
corresponding Isom-Hilb component be the locally closed subscheme IHm(δ1, δ2, τ) of terδG(m) whose
closed points are the glued subalgebras of type (δ1, δ2, τ). By Goursat’s Lemma, it is clear that

terδG(m) =
⊔

(δ1,δ2,τ)∈st(δ,m)

IHm(δ1, δ2, τ).
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To show that each Isom-Hilb component is locally closed, we first need a result on the semicontinuity
of the values δ1, δ2, τ .

Proposition 3.3. Fix m ≥ 2 and δ ≥ m − 1. Identify each closed point S ∈ terδG(m) with the data

(S1, I1, S2, I2, ϕ) where S1 ∈ terδ1G (m−1) and S2 ∈ terδ2(1). Consider the following N-valued functions

on the set of closed points of terδG(m):

f(S) = dimk

(
m−1⊕
i=1

k[[ti]]

)/
S1;

g(S) = dimk k[[tm]]/S2;

h(S) = dimk ϕ.

Then f, g are upper semicontinuous, and h is lower semicontinuous.

Proof. Let Λ1 =
⊕m−1

i=1 k[[ti]]/(t
2δ
i ), let Λ2 = k[[tm]]/(t2δm ), and identify each S ∈ terδG(m) with its

corresponding k-vector subspace in G(2δm − δ,Λ1 ⊕ Λ2). Then f(S) = dimk Λ1/π1(S) = 2δm −
dimk π1(S), where π1(S) denotes the projection of S onto Λ1. Decompose S into (S ∩ Λ1) ⊕ V , so
that Λ1 ∩ V is trivial. Then π1(S) = π1(V ) ∼= V , hence

dimk π1(S) = min{2δ(m− 1),dimk V }.
From this, it is clear that for any n ∈ Z, dimk π1(S) ≤ n if and only if dimk(S ∩ Λ1) ≥ 2δm− δ − n.
But

{S ∈ G(2δm−δ,Λ1⊕Λ2) : dimk π1(S) ≤ n} = {S ∈ G(2δm−δ,Λ1⊕Λ2) : dimk(S∩Λ1) ≥ 2δm−δ−n}
is a Schubert variety, hence is a closed subscheme of the Grassmannian. Moreover, its intersection
with terδG(m) is a closed subscheme of terδG(m). This implies π1(S) is lower semicontinuous on the
glued territory, and consequently f(S) is upper semicontinuous.

A similar argument shows that g(S) = dimk Λ2/π2(S) is upper semicontinuous. Hence so is the
sum f(S) + g(S). We know h(S) = dimk ϕ = δ − (f(S) + g(S)) by Proposition 2.3. Since δ is clearly
a constant value on terδG(m), this guarantees h(S) is lower semicontinuous. �

Corollary 3.4. Every Isom-Hilb component in terδG(m) is locally closed.

Proof. Let f, g, h be the functions from Proposition 3.3, and let (δ1, δ2, τ) be a sufficient triple. By
semicontinuity, the subset U of terδG(m) for which f(S) < δ1 +1 is open, the subset V for which g(S) <
δ2 + 1 is open, and the subset Z for which h(S) ≤ τ is closed. We clearly see that IHm(δ1, δ2, τ) =
U ∩ V ∩ Z, therefore it is locally closed. �

For a sufficient triple (δ1, δ2, τ) ∈ st(δ,m), IHm(δ1, δ2, τ) should parametrize all of the glued sub-
algebras (S1, I1, S2, I2, ϕ) of type (δ1, δ2, τ). Based on this quintuple of data, it becomes clear that
three familiar moduli spaces are needed: the glued territories will parametrize the possible glued sub-
algebras S1 and S2, respectively; punctual Hilbert schemes will parametrize the possible ideals I1 and
I2; and an Isom scheme will parametrize the possible isomorphisms ϕ. This is where the “Isom-Hilb”
nomenclature comes from. More precisely, we will construct a scheme X which is a relative Isom
scheme over the product of relative punctual Hilbert schemes taken over glued territories. There is a
morphism f : X→ G(2δm− δ, 2δm), and the image f(X) is our desired IHm(δ1, δ2, τ).

We will now overview the construction of the scheme X and the morphism f just described. Again
fix the sufficient triple (δ1, δ2, τ) ∈ st(δ,m). Clearly the glued territories terδ1G (m − 1) and terδ2(1)
will parametrize all possible S1 and S2 needed in the Goursat data. To find the τ -codimensional
ideals of each Si, we make use of the punctual Hilbert scheme, in the sense of [Iar77], [Fog68], and
[Ber08]. More precisely, given a finite-dimensional local k-algebra A and natural number τ , the
punctual Hilbert scheme Hilb(A, τ), which parametrizes the zero-dimensional subschemes of SpecA
of degree τ , is a projective connected scheme [Fog68, Proposition 2.2]. If A is local but not necessarily
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finite-dimensional, then there is a one-to-one correspondence between τ -codimensional ideals of A and
τ -codimensional ideals of A/mτ [Ber08, Lemma 2.22]. Hence, by abuse of notation, Hilb(A, τ) will
denote Hilb(A/mτ , τ). In our case, S1 and S2 are glued subalgebras, hence local. Thus there exist
punctual Hilbert schemes Hilb(S1, τ) and Hilb(S2, τ).

Since terδ1G (m− 1) and terδ2(1) are projective, we can relativize the punctual Hilbert scheme over
them. Let Hilbm−1(δ1, τ) and Hilb1(δ2, τ), respectively, denote the resulting schemes. We then take
the product of these two relative punctual Hilbert schemes. Each closed point of Hilbm−1(δ1, τ) ×
Hilb1(δ2, τ) is of the form ((S1, I1), (S2, I2)), where S1 ∈ terδ1G (m− 1), S2 ∈ terδ2(1), I1 ∈ Hilb(S1, τ),
and I2 ∈ Hilb(S2, τ).

Finally, to find the isomorphisms between S1/I1 and S2/I2, we make use of an Isom scheme. Given
arbitrary flat projective k-schemes X,Y , there exists an Isom scheme Isomk(X,Y ) parametrizing
k-isomorphisms X → Y . This is an open subscheme of Mork(X,Y ), the scheme parametrizing k-
morphisms X → Y [FGI05]. In particular, if X = SpecB and Y = SpecC, where B,C are finite-
dimensional k-algebras, then Mork(X,Y ) is an affine k-scheme [Sta22, Tag 0BL0], which equivalently
classifies the k-algebra homorphisms C → B; consequently, Isomk(X,Y ) in this case is also affine
and classifies the k-algebra isomorphisms C → B. If B,C are isomorphic, then the closed points of
the Isom scheme form the affine algebraic group Autk(B) = Autk(C); otherwise, there are no closed
points. In our case, S1/I1 and S2/I2 are τ -dimensional k-algebras, so Isomk(SpecS1/I1,SpecS2/I2)
is an affine scheme.

Like the punctual Hilbert schemes, we want to relativize the Isom scheme over Hilbm−1(δ1, τ) ×
Hilb1(δ2, τ) [ACG11]. More precisely, let U be the universal family over Hilbm−1(δ1, τ), and let V be
the universal family over Hilb1(δ2, τ). These are both projective and flat over their respective bases,
hence the relative Isom scheme we desire is

IsomHilbm−1(δ1,τ)×Hilb1(δ2,τ)(U× Hilb1(δ2, τ),Hilbm−1(δ1, τ)×V).

This is precisely our scheme X. A closed point in this scheme is of the form ((S1, I1), (S2, I2), ϕ), where
((S1, I1), (S2, I2)) ∈ Hilbm−1(δ1, τ)× Hilb1(δ2, τ) and, assuming S1/I1 ∼= S2/I2, ϕ ∈ Autk(Si/Ii).

The scheme X comes equipped with a universal family, which by construction defines a subbundle
of (
⊕m

i=1 k[[ti]]/(t
2δ
i ))⊗kOX of rank 2δm− δ. Hence we obtain a morphism f : X→ G(2δm− δ, 2δm).

It is clear that f(X) lies in terδG(m), and that f , when restricted to its image, is a bijection on closed
points. This image is IHm(δ1, δ2, τ).

For our purposes, it will only be necessary to know the closed points of the Isom-Hilb component,
not its overall scheme structure. To this end, we will introduce the following concept.

Definition 3.5. Let X be a scheme. We say that a finite collection of schemes X1, . . . , Xr is a
parametrization of X if there exists a morphism g :

⊔r
j=1Xj → X such that g is a bijection on closed

points.

Note then that if X1, . . . , Xr define a parametrization of X via a morphism g :
⊔r
j=1Xj → X,

and h : X → Y is a morphism which is also a bijection on closed points, then X1, . . . , Xr will also
define a parametrization of Y via h ◦ g. In particular, a parametrization of the scheme X constructed
above will parametrize IHm(δ1, δ2, τ). It is also easy to see that if X1, . . . , Xr parametrize X and
Y1, . . . , Ys parametrize Y , then the collection Xi × Yj will parametrize X × Y . We compute some
relevant examples below.

Example 3.6. For any τ , k[[t]] has a unique ideal of codimension τ , namely (tτ ). Hence {pt} is a
parametrization of Hilb(k[[t]], τ). Since k[[t]] is the unique point of ter0(1), it follows that {pt} is a
parametrization of Hilb1(0, τ).

Example 3.7. Any local k-algebra S has a unique ideal of codimension 1, namely its maximal ideal.
Hence {pt} is a parametrization of Hilb(S, 1). It follows that for any δ,m, terδG(m) is a parametrization
of Hilbm(δ, 1).

Example 3.8. The ideals of codimension τ ≥ 2 of k[[t2, t3]] are of the form (tτ + atτ+1) for all
a ∈ k, and (tτ+1, tτ+2) [Lax00, Proposition 1.1]. This yields a family of ideals parametrized by A1
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and {pt}, so there exist morphisms from each of these families to Hilb(k[[t2, t3]], τ). Thus A1 t {pt}
is a parametrization of Hilb(k[[t2, t3]], τ). Since k[[t2, t3]] is the unique point of ter1(1), it follows that
A1 t {pt} is also a parametrization for Hilb1(1, τ).

Example 3.9. Let S be a local k-algebra with maximal ideal m, and let r = dimk m/m
2. If I is an

ideal of codimension 2, then m2 ⊂ I. Moreover, S/I ∼= k[x]/(x2), as this is the unique two-dimensional
k-algebra up to isomorphism. Hence I = I ′+m2 for some I ′ ⊂ m. Let {f1, . . . , fr} be a basis for m/m2

as a k-vector space. Let π : S → S/I be the quotient map. We consider all possible cases. If f1 /∈ I,
then S/I ∼= k[f1]/(f2

1 ). This suggests π(fi) ∈ span{f1} for all i ≥ 2. Hence for all c2, . . . , cr ∈ k, we
obtain the following collection of ideals:

I1,c2,...,cr = (f2 + c2f1, f3 + c3f1, . . . , fr + crf1) + m2.

Now suppose f1 ∈ I, but f2 /∈ I. Then again for all c3, . . . , cr ∈ k we obtain the following ideals:

I0,1,c3,...,cr = (f1, f3 + c3f2, f4 + c4f2, . . . , fr + crf2) + m2.

This pattern repeats until f1, . . . , fr−1 ∈ I. If fr ∈ I, then I = m, contradicting its codimension. So
thus fr /∈ I, and we obtain the unique ideal

I0,...,0,1 = (f1, . . . , fr−1) + m2.

It is clear from the subscripts of the ideals listed above that we have a Pr−1-family of ideals, thus
Pr−1 parametrizes Hilb(S, 2).

We now discuss an obstruction to the Isom-Hilb stratification, namely that fibers of Isom-Hilb
components (and sometimes even the entire component itself) can be empty.

Definition 3.10. Let ((S1, I1), (S2, I2)) be a closed point of Hilbm−1(δ1, τ) × Hilb1(δ2, τ). The fiber
in the Isom-Hilb component IHm(δ1, δ2, τ) over this closed point will refer to the Isom scheme
Isomk(SpecS1/I1,SpecS2/I2). The closed point will be called a gluable pair if S1/I1 ∼= S2/I2 as
k-algebras; equivalently, its fiber in the Isom-Hilb component is nonempty.

Example 3.11. Every closed point ((S1, I1), (S2, I2)) ∈ Hilbm−1(δ1, 1)×Hilb1(δ2, 1) is a gluable pair,
due to the fact that there is a unique one-dimensional k-algebra, namely k. Each fiber of the Isom-Hilb
component IHm(δ1, δ2, 1) consists of a point, since k has only the trivial k-automorphism idk.

Example 3.12. Every closed point ((S1, I1), (S2, I2)) ∈ Hilbm−1(δ1, 2)×Hilb1(δ2, 2) is a gluable pair,
due to the fact that there is a unique two-dimensional k-algebra, namely k[x]/(x2). Each fiber of the
Isom-Hilb component IHm(δ1, δ2, 2) is isomorphic to A1 \ {0}, since Autk(k[x]/(x2)) ∼= GL(1, k).

The next two examples show that empty fibers do appear in some Isom-Hilb components. These
empty fibers will ultimately serve as an obstruction to making general statements about the geometry
of the glued territory in Section 4.

Example 3.13. Consider IH2(0, 1, 3) ⊂ ter4
G(2). We know Hilb1(0, 3) is parametrized by a point,

and Hilb1(1, 3) is parametrized by A1 t {pt}. Hence Hilb1(0, 3)× Hilb1(1, 3) can be parametrized by
A1 t {pt}, with the A1-family given by closed points of the form ((k[[t]], (t3)), (k[[t2, t3]], (t3 + at4)))
for some a ∈ k, and the point given by ((k[[t]], (t3)), (k[[t2, t3]], (t4, t5))). However, the point is not a
gluable pair, since k[[t2, t3]]/(t4, t5) ∼= k[x, y]/(x2, xy, y2) is not isomorphic to k[[t]]/(t3) ∼= k[x]/(x3).
Hence its fiber in the Isom-Hilb component will be empty.

Example 3.14. Consider IH2(0, 1, 4) ⊂ ter5
G(2). Again, we know Hilb1(0, 4) is parametrized by a

point, and Hilb1(1, 4) is parametrized by A1t{pt}. Hence Hilb1(0, 4)×Hilb1(1, 4) can be parametrized
by A1t{pt}, with the A1-family given by closed points of the form ((k[[t]], (t4)), (k[[t2, t3]], (t4 +at5)))
for some a ∈ k, and the point given by ((k[[t]], (t4)), (k[[t2, t3]], (t5, t6))). None of the points in the
A1-family are gluable pairs, since k[[t2, t3]]/(t4 +at5) ∼= k[x, y](x2, y2) is not isomorphic to k[[t]]/(t4) ∼=
k[x]/(x4). Similarly, the point is also not a gluable pair, since k[[t2, t3]]/(t5, t6) ∼= k[x, y]/(x3, xy, y2) is
not isomorphic to k[x]/(x4). Therefore this Isom-Hilb component is entirely empty. The corresponding
geometry fact is that a curve with a cusp and a smooth curve cannot meet at the cusp with intersection
multiplicity 4.
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Proposition 3.15. The nonempty fibers of a nonempty Isom-Hilb component IHm(δ1, δ2, τ) are pro-
jective if and only if τ = 1.

Proof. By Example 3.11, when τ = 1, each fiber consists of one closed point, hence is projective. Now
suppose τ ≥ 2, and assume, for the sake of contradiction, that a nonempty fiber was projective. If
the fiber is over the closed point ((S1, I1), (S2, I2)), then S1/I1 ∼= S2/I2, and the fiber is the affine
algebraic group Autk(Si/Ii). If we assume the fiber is also projective, then Autk(Si/Ii) must be a
finite group. We show that this leads to a contradiction.

We have Si/Ii is a commutative τ -codimensional k-algebra, necessarily local with maximal ideal m.
Hence it is isomorphic to some quotient k[x1, . . . , xn]/J , where J ⊂ (x1, . . . , xn)2 and 1 ≤ n ≤ τ − 1
[GS94]. The Loewy length ` of Si/Ii is the smallest natural number for which (x1, . . . , xn)` ⊂ J
(equivalently, m` = 0). Note ` 6= 1. If ` = 2, then Si/Ii ∼= k[x1, . . . , xτ−1]/(x1, . . . , xτ−1)2, which has
automorphism group GL(τ − 1, k). Since k is algebraically closed, it is not finite, so this is never a
finite group. If ` > 2, then we can find a monomial basis {v1, . . . , vp} for m`−1. Let H be the subgroup
of automorphisms determined by xj 7→ xj + cj,1v1 + · · · + cj,pvp. There are no restrictions on these
coefficients, so H ∼= Anp, again showing that Autk(Si/Ii) is not finite. �

Corollary 3.16. Let X = IHm(δ1, δ2, τ) be an Isom-Hilb component in terδG(m) with τ ≥ 2. If

X denotes the projective closure of X, then any closed point S ∈ X \ X belongs to an Isom-Hilb
component of the form IHm(ε1, ε2, σ) where σ < τ .

Proof. By Proposition 3.15, the fibers of IHm(δ1, δ2, τ) are not projective since τ 6= 1, so there are in
fact closed points in X \X. Since terδG(m) is projective, it contains X. Hence if S is a closed point in

X \X, then S must belong to some Isom-Hilb component of the form IHm(ε1, ε2, σ). By Proposition
3.3, gluing dimension is lower semicontinuous, hence σ ≤ τ . If σ = τ , then δ1 + δ2 = ε1 + ε2. It
cannot be the case that ε1 = δ1 and ε2 = δ2, since then this Isom-Hilb component is precisely X. But
then either ε1 < δ1 or ε2 < δ2, and this would contradict the upper semicontinuity of these quantities.
Thus σ < τ . �

Overall, we obtain a recursive procedure for computing all of the glued territories using the Isom-
Hilb stratification.

Step 0: Take any sufficient triple (δ1, δ2, τ) ∈ st(δ,m). Assume that the closed points of terδ1G (m−1)

and terδ2(1) are known.
Step 1: Find a parametrization of Hilbm−1(δ1, τ) by finding the closed points of Hilb(S1, τ) for

each S1 ∈ terδ1G (m − 1). Similarly, find a parametrization of Hilb1(δ2, τ) by finding the closed points

of Hilb(S2, τ) for each S2 ∈ terδ2(1).
Step 2: Restrict the parametrization of Hilbm−1(δ1, τ)× Hilb1(δ2, τ) to its gluable pairs.
Step 3: Find a parametrization for IHm(δ1, δ2, τ) by finding Autk(Si/Ii) over each gluable pair

((S1, I1), (S2, I2)). This provides sufficient data to explicitly write out all glued subalgebras appearing
in this Isom-Hilb component. Repeat Steps 0-3 for each sufficient triple.

Step 4: View the glued subalgebras in each Isom-Hilb component as points in the sub-Grassmannian
G(2δm−m− δ + 1, 2δm−m). That is, compute Plücker coordinates and find polynomial equations
defining the closure of each Isom-Hilb component.

4. Global Geometry of the Glued Territory

Here we examine some geometric properties of the glued territory, including its connectedness, its
irreducible components, and its dimension bounds. Throughout this section, we will make use of the
following notation. For any nonempty subset Ψ ⊂ {1, . . . , δ −m+ 2}, we define the following subsets
of terδG(m):

GΨ :=
⋃

(δ1,δ2,τ)∈st(δ,m)
τ∈Ψ

IHm(δ1, δ2, τ).
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For instance G{1} consists of the Isom-Hilb components with τ = 1, and surely G{1,...,δ−m+2} =

terδG(m). This will simply provide us with a way to arrange the Isom-Hilb components by gluing
dimension.

4.1. Connectedness and Irreducible Components. In this section we prove that the glued ter-
ritories are connected. First we require a lemma.

Lemma 4.1. Suppose S ∈ terδG(m), where m ≥ 1, and suppose I ⊂ S is an ideal such that dimk S/I =

τ ≥ 1. Then k ⊕ I ∈ terδ+τ−1
G (m).

Proof. By assumption, S is glued, so it is local. Denote its maximal ideal by m. The k-module
inclusions k ↪→

⊕m
i=1 k[[ti]] and I ↪→

⊕m
i=1 k[[ti]] induce an injective k-linear map ψ : k ⊕ I →⊕m

i=1 k[[ti]], given by (c, f) 7→ c + f , where c represents the m-tuple (c, . . . , c). We claim imψ is a
subring of

⊕m
i=1 k[[ti]], by virtue of the fact that I is an ideal:

ψ((c1, f1)) + ψ((c2, f2)) = (c1 + f1) + (c2 + f2)

= c1 + c2 + (f1 + f2)

= ψ((c1 + c2, f1 + f2)),

ψ((c1, f1))ψ((c2, f2)) = (c1 + f1)(c2 + f2)

= c1c2 + c1f2 + c2f1 + f1f2

= ψ((c1c2, c1f2 + c2f1 + f1f2)).

Since k ⊕ I ∼= imψ as k-modules, we will, by abuse of notation, continue to refer to k ⊕ I as a ring.
To show that k ⊕ I is moreover a k-subalgebra, there is a natural module map (compatible as a ring
map) ι : k → k ⊕ I given by c 7→ ψ((c, 0)) = c, so therefore the following diagram commutes:

k k ⊕ I

m⊕
i=1

k[[ti]].

ι

Note further that k ⊕ I has a unique maximal ideal, namely I, so it must be a glued subalgebra.
To compute the codimension of k ⊕ I, observe k ⊕ I ⊂ S, so

dimk

(
m⊕
i=1

k[[ti]]

)/
(k ⊕ I) = dimk

(
m⊕
i=1

k[[ti]]

)/
S + dimk S/(k ⊕ I) = δ + dimk S/(k ⊕ I).

Since S is local, S ∼= k ⊕m, and dimk S/I = τ ≥ 1 by assumption. This forces I ⊂ m, so

dimk S/(k ⊕ I) = dimk(k ⊕m)/(k ⊕ I) = dimk m/I = τ − 1.

Therefore k ⊕ I has codimension δ + τ − 1 in
⊕m

i=1 k[[ti]]. �

Theorem 4.2. For m ≥ 1 and δ ≥ m− 1, terδG(m) is connected.

Proof. We already know terδ(1) is connected for all δ. So we will inductively assume terδG(m − 1) is

connected for all δ, and use this to show terδG(m) is connected for all δ. If we look at any nonempty

Isom-Hilb component IHm(δ1, δ2, τ) ⊂ terδG(m) with τ ≥ 2, then Corollary 3.16 tells us that its closure
lies in G{1,...,τ−1}. Hence we obtain connected “towers” in which Isom-Hilb components are stacked by
gluing dimension. All that needs to be checked is that the “foundation” of these towers is connected.
In general, G{1} will be disconnected (see Examples 5.1, 5.2, 5.3). Instead we prove G{1,2} forms the
necessary connected foundation for the towers.

Take any Isom-Hilb component IHm(δ1, δ2, 2) in G{2}, so that δ1 +δ2 +2 = δ, and take an arbitrary
glued subalgebra S = (S1, I1, S2, I2, ϕ) in this Isom-Hilb component. As a k-vector space, S looks like

k{(1, 1), (v1, cv2), (I1, 0), (0, I2)}
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where c ∈ k∗ comes from Autk(k[x]/(x2)) ∼= A1 \ {0}, vi ∈ Si \ Ii, and 0 and 1 represent the (m− 1)-
tuples (0, . . . , 0) and (1, . . . , 1), respectively. If we vary c, we get the (A1 \ {0})-fiber of the Isom-Hilb
component over the point ((S1, I1), (S2, I2)) ∈ Hilbm−1(δ1, 2)×Hilb1(δ2, 2). Taking the closure of this
fiber means that there are glued subalgebras obtained at c = 0,∞. When c = 0, we get the k-vector
space

k{(1, 1), (v1, 0)(I1, 0), (0, I2)}.
Observe dimk S1/I1 = 2 and v1 /∈ I1, so dimk S1/((v1)+I1) = 1, which forces (v1)+I1 to be the unique

maximal ideal mS1 of S1. Furthermore, k ⊕ I2 ∈ terδ2+1
G (1) by Lemma 4.1. Therefore, this yields a

glued subalgebra with the data (S1,mS1 , k⊕I2, I2, idk), and this is a closed point in IHm(δ1, δ2 +1, 1).
On the other hand, when c =∞, we get the k-vector space

k{(1, 1), (0, v2), (I1, 0), (0, I2)}.

As before, (v2)+ I2 must be the maximal ideal mS2 of S2, and k⊕ I1 ∈ terδ1+1(m−1). Therefore, this
yields a glued subalgebra with the data (k⊕I1, I1, S2,mS2

, idk), and this is a closed point in IHm(δ1 +
1, δ2, 1). Thus any two Isom-Hilb components of the form IHm(δ1, δ2 + 1, 1) and IHm(δ1 + 1, δ2, 1)
are connected via IHm(δ1, δ2, 2). �

Remark 4.3. Alternatively, one can verify connectedness using Ishii’s results (as pointed out by
Sebastian Bozlee). For any Artinian k-algebra A and δ ∈ N, the contravariant functor FδA from the
category of Noetherian k-schemes to the category of sets given by

FδA(X) =

{
OX -subalgebras S ⊂ A⊗k OX such that

(A⊗k OX)/S is a locally free OX -module of rank δ

}
is representable by a projective k-scheme Terδ(A) [Ish80, Theorem 1]. If dimk A = r, then FδA is

a subfunctor of the Grassmannian functor, so that Terδ(A) is a closed subscheme of G(r − δ, r).
This scheme with its reduced structure is given the notation terδ(A). If A is local, then terδ(A) is
connected [Ish80, Corollary 2]. Now by Proposition 2.10, and by virtue of the fact that +×m is a (m−1)-
codimensional k-subalgebra of

⊕m
i=1 k[[ti]]/(t

2δ
i ), it is easy to see that terδG(m) and terδ−m+1(+×m) are

isomorphic as schemes. The latter is connected since +×m is local, thus so is the glued territory.

It is important to note that the Isom-Hilb components do not correspond to irreducible components
of the glued territory. To see this, note that the connectedness argument above shows that the Isom-
Hilb components in G{1} lie in the closure of G{2}. Moreover, an Isom-Hilb component itself might
not be irreducible.

Proposition 4.4. For m ≥ 1, termG (m) ∼= Pm−1.

Proof. By Remark 4.3, termG (m) ∼= ter1(+×m) ⊂ G(m− 1,m). Any (m− 1)-dimensional k-subspace of

k{t1, . . . , tm} is closed under multiplication, so in fact ter1(+×m) = G(m− 1,m) ∼= Pm−1. �

Conjecture. For m ≥ 2, terδG(m) is irreducible if and only if δ = m− 1 or δ = m.

We already know term−1
G (m) = {pt} and termG (m) ∼= Pm−1, so these are clearly irreducible. For

δ ≥ m + 1, we would ideally want to argue that the glued territory terδG(m) can be expressed as the
union of two groups of Isom-Hilb components which do not entirely lie in the closure of the other.
This approach comes with obstructions, however, due to the unpredictable behavior of the fibers of
the Isom-Hilb components discussed in Section 3. Determining if a point in one Isom-Hilb component
lies in the closure of another would require some confirmation about the automorphism groups of the
finite-dimensional k-algebras, and there is no guarantee as to which k-algebras will actually appear in
the gluable pairs (or even if the Isom-Hilb component is nonempty).

Observe that, if the above conjecture were true, then this would also confirm that term−1
G (m) and

termG (m) are the only smooth glued territories. For terδG(m) with δ ≥ m + 1, being connected and
reducible would imply there is some singular locus.
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4.2. Dimension Bounds. It is difficult to pinpoint the precise dimension of the glued territories
without explicitly computing them, even in the unibranch case. For low values of δ, it appears that
the dimension of terδ(1) is δ− 1 (see Examples 1.9, 1.10, 1.11). However, this pattern quickly fails for
δ ≥ 6.

Proposition 4.5. There exists a semigroup stratum TΓ ⊂ terδ(1) of dimension strictly greater than
δ − 1 when δ ≥ 6.

Proof. For n ≥ 2 ∈ N, consider the numerical semigroup 〈n, n+ 1〉, which has as its complement

N \ 〈n, n+ 1〉 = {1, . . . , n− 1, n+ 2, . . . , 2n− 1, 2n+ 3, . . . , 3n− 1, . . .}.

Hence the genus of 〈n, n+ 1〉 is

δ = (n− 1) + (n− 2) + · · ·+ 2 + 1 =
n(n− 1)

2
.

All but the first n− 1 gaps are greater than n and greater than n+ 1, so by Proposition 1.6, there is
a closed immersion of T〈n,n+1〉 into AN , where

N = 2((n− 2) + (n− 3) + · · ·+ 1) = (n− 1)(n− 2).

There are no relations between n and n + 1 which are smaller than the conductor of 1
2n(n − 1), so

this closed immersion is in fact an isomorphism. Observe that N > δ − 1 when n ≥ 4, which implies
δ ≥ 6. �

Hence at best we can guarantee that the dimension of terδ(1) is bounded below by δ−1. An upper
bound on the dimension of terδ(1) can be obtained using the embedding dimension of numerical
semigroups. The embedding dimension of a numerical semigroup Γ = 〈n1, . . . , ns〉 ⊂ N is the quantity
e(Γ) = s, i.e. the number of elements in its minimal generating set. As the name suggests, if P

is a point on a curve C, and its complete local ring ÔC,P is a k-subalgebra of k[[t]] with numerical
semigroup Γ, then

e(Γ) = dimk TC,P = dimk mP /m
2
P .

The smallest generator n1 is the multiplicity m(Γ) of Γ. It is always the case that e(Γ) ≤ m(Γ)
[GR09, Proposition 2.10]. Clearly the maximum possible multiplicity that can be obtained by a
numerical semigroup of genus δ is δ + 1. Hence if g(Γ) = δ, then e(Γ) ≤ δ + 1.

From Remark 4.3, terδ(1) is the reduced scheme structure of Terδ(k[[t]]/(t2δ)). For any geometric

point S ∈ Terδ(k[[t]]/(t2δ)), the tangent space TTerδ(k[[t]]/(t2δ)),S at S is isomorphic to Derk(S, k[[t]]/S)

[Ish80, Proposition 1]. Hence we examine these k-derivations. Recall that, for a fixed δ, the maximum
degree subalgebra refers to the k-subalgebra k[[tδ+1, . . . , t2δ+1]].

Proposition 4.6. Take S ∈ terδ(1), so that S is local with maximal ideal m. The space of k-
derivations Derk(S, k[[t]]/S) can be identified with a subspace of Homk(m/m2, k[[t]]/S). In particular,
if S is the maximum degree subalgebra, then Derk(S, k[[t]]/S) ∼= Homk(m/m2, k[[t]]/S).

Proof. If ∂ : S → k[[t]]/S is a k-derivation, then ∂(c) = 0 for all c = (c, . . . , c) ∈ S \m, and the Leibniz
rule must be satisfied, i.e. ∂(fg) = f∂(g) + g∂(f) for any f, g ∈ S. Hence ∂ is entirely determined by
the image of m/m2.

If S is the maximum degree subalgebra, then as k-vector spaces, S = k{1, tδ+1, . . . , t2δ−1} and
k[[t]]/S = k{t, t2, . . . , tδ}. If f, g ∈ m/m2, then ∂(fg) = f∂(g) + g∂(f) is trivial, as both sides equal
zero. The left hand side is zero due to the fact that fg = 0 in S. For the right hand side, note
that ∂(g) = a1t+ · · ·+ aδt

δ and f = b1t
δ+1 + · · ·+ bδ−1t

2δ−1, so their product is already annihilated
in k[[t]]/S, and the same applies to the product g∂(f). Hence the Leibniz rule does not yield any
additional restrictions, so in fact all k-linear maps m/m2 → k[[t]]/S are k-derivations. �

Proposition 4.7. For any δ, dim terδ(1) ≤ δ(δ + 1).
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IH2(0, 1, 1) IH2(1, 0, 1)

IH2(0, 0, 2)

Figure 1. ter2
G(2)

Proof. We have the following inequalities:

dim terδ(1) ≤ max
S∈terδ(1)

Tterδ(1),S ≤ max
S∈Terδ(k[[t]]/(t2δ))

TTerδ(k[[t]]/(t2δ)),S

For any S with maximal ideal m, TTerδ(k[[t]]/(t2δ)),S
∼= Derk(S, k[[t]]/S), which we showed is iso-

morphic to a subspace of Homk(m/m2, k[[t]]/S). But dimk m/m
2 = e(ΓS), where ΓS is the nu-

merical semigroup of S, and the maximum possible embedding dimension of ΓS is δ + 1. Hence
dimk Homk(m/m2, k[[t]]/S) ≤ δ(δ + 1). �

We now present some dimension bounds for the multibranch glued territories.

Proposition 4.8. For m ≥ 2 and δ ≥ m,

δ − 1 ≤ dim terδG(m) ≤ (δ − 1)(2δm−m− δ + 1).

Proof. For the lower bound, consider the Isom-Hilb component IHm(m − 2, δ − m, 2). We know
all fibers are isomorphic to A1 \ {0}. We also know term−2

G (m − 1) = {+×m−1}, and Hilb(+×m−1, 2)

is parametrized by Pm−2 by Example 3.9. Hence Hilbm−1(m − 2, 2) is also parametrized by Pm−2.
On the other hand, in terδ−m(1), the semigroup stratum T〈δ−m+1,...,2δ−2m+1〉 consists of the unique

k-subalgebra S = k[[tδ−m+1, . . . , t2δ−2m+1]], and again by Example 3.9, Hilb(S, 2) is parametrized
by Pδ−m. So the subset Y ⊂ IHm(m − 2, δ − m, 2) of glued subalgebras with the Goursat data
(+×m−1, I1, S, I2, ϕ) is parametrized by Pm−2 × Pδ−m × (A1 \ {0}). Thus

dim terδG(m) ≥ dim IHm(m− 2, δ −m, 2) ≥ dimY ≥ (m− 2) + (δ −m) + 1 = δ − 1.

The upper bound comes from the fact that terδG(m) is a closed subscheme of the sub-Grassmannian
G(2δm−m− δ + 1, 2δm−m). �

5. Examples

Example 5.1. ter2
G(2). By Proposition 4.4, this should be isomorphic to P1. We will confirm this

with the procedure outlined at the end of Section 3. There are three sufficient triples in st(2, 2),
namely (0, 1, 1), (1, 0, 1), (0, 2, 2).

For IH2(0, 1, 1), note that ter0(1) = {k[[t]]} and ter1(1) = {k[[t2, t3]]}. Since these are both local,
Hilb(k[[t]], 1) = {(t)} and Hilb(k[[t2, t3]], 1) = {(t2, t3)}. Hence Hilb1(0, 1)×Hilb1(1, 1) is parametrized
by a point. As discussed in Example 3.11, this point clearly forms a gluable pair, and its fiber in the
Isom-Hilb component is a point, so IH2(0, 1, 1) consists of the unique glued subalgebra given by the
Goursat data (k[[t1]], (t1), k[[t22, t

3
2]], (t22, t

3
2), idk). Equivalently, this is the glued subalgebra

k[[(t1, 0), (0, t22), (0, t32)]].

For IH2(1, 0, 1), there is a similar construction to the one above, and we end up with a unique
glued subalgebra with the Goursat data (k[[t21, t

3
1]], (t21, t

3
1), k[[t2]], (t2), idk), or equivalently

k[[(t21, 0), (t31, 0), (0, t2)]].
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IH3(1, 0, 2)

IH3(2, 0, 1)

IH3(1, 1, 1)

Figure 2. ter3
G(3)

For IH2(0, 0, 2), note that ter0(1) = {k[[t]]}, and Hilb(k[[t]], 2) = {(t2)}, so Hilb1(0, 2)×Hilb1(0, 2)
is parametrized by a point. As discussed in Example 3.12, this point forms a gluable pair, and its fiber
in the Isom-Hilb component is isomorphic to A1 \{0}, where c ∈ k∗ corresponds to the automorphism
ϕc : k[x]/(x2) → k[x]/(x2) given by x 7→ cx. Thus IH2(0, 0, 2) is parametrized by A1 \ {0}, where
for each c ∈ k∗, we obtain the Goursat data (k[[t1]], (t1), k[[t2]], (t2), ϕc), or equivalently the glued
subalgebra

k[[(t1, ct2), (t21, 0), (0, t22)]].

Note that when c = 0, the glued subalgebra of IH2(0, 1, 1) is obtained, and when c = ∞, the glued
subalgebra of IH2(1, 0, 1) is obtained.

With respect to the basis {(t1, 0), (t21, 0), (0, t2), (0, t22)}, it is clear that in computing Plücker coor-
dinates for each of these k-subalgebras, we obtain P1. See Figure 1.

Example 5.2. ter3
G(3). Again by Proposition 4.4, this should be isomorphic to P2. There are three

sufficient triples: (1, 1, 1), (2, 0, 1), (1, 0, 2).
For IH3(1, 1, 1), note that ter1

G(2) = {+×2}, with Hilb(+×2, 1) = {((t1, 0), (0, t2))}, and ter1(1) =

{k[[t2, t3]]} with Hilb(k[[t2, t3]], 1) = {(t2, t3)}. Hence Hilb2(1, 1) × Hilb1(1, 1) is parametrized by a
point. By Example 3.11, IH3(1, 1, 1) is parametrized by a point, and this point corresponds to the
glued subalgebra

k[[(t1, 0, 0), (0, t2, 0), (0, 0, t23), (0, 0, t33)]].

For IH3(2, 0, 1), note that ter2
G(2) ∼= P1 by the above example, and for each S ∈ ter2

G(2), Hilb(S, 1) =

{mS}. Hence Hilb2(2, 1)×Hilb1(0, 1) is parametrized by P1, with pairs given by ((S,mS), (k[[t]], (t))).
Again by Example 3.11, IH3(2, 0, 1) is parametrized by P1, with the corresponding glued subalgebras
being {

k[[(t1, 0, 0), (0, t22, 0), (0, t32, 0), (0, 0, t3)]], k[[(t21, 0, 0), (t31, 0, 0), (0, t2, 0), (0, 0, t3)]],
k[[(t1, at2, 0), (t21, 0, 0), (0, t22, 0), (0, 0, t3)]] : a ∈ k∗

}
.

For IH3(1, 0, 2), note that ter1
G(2) = {+×2}, with Hilb(+×2, 2) parametrized by P1 by Example 3.9.

These ideals are ((t1, 0)) +m2, ((0, t2)) +m2, and ((t1, bt2)) +m2 for each b ∈ k∗. Hence Hilb2(1, 2)×
Hilb1(0, 2) is parametrized by P1, and thus IH3(1, 0, 2) is parametrized by P1 × (A1 \ {0}), with the
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IH2(1, 1, 1)

IH2(2, 0, 1)IH2(0, 2, 1)

IH2(0, 1, 2) IH2(1, 0, 2)

IH2(0, 0, 3)

Figure 3. ter3
G(2)

glued subalgebras being{
k[[(t1, 0, 0), (0, t2, ct3), (0, t22, 0), (0, 0, t23)]], k[[(t1, 0, ct3), (0, t2, 0), (t21, 0, 0), (0, 0, t23)]],

k[[(t1, bt2, 0), (t1, 0, ct3), (t21, 0, 0), (0, t22, 0), (0, 0, t23)]] : b, c ∈ k∗
}
.

Note that when c = 0 in each of these fibers, the resulting glued subalgebra is the one in IH3(1, 1, 1),
and when c =∞, the resulting glued subalgebras lie in IH3(2, 0, 1). Computing Plücker coordinates,
we confirm that these Isom-Hilb components form a P2. See Figure 2.

Example 5.3. ter3
G(2). There are six sufficient triples in st(3, 2). We begin with the Isom-Hilb

components with τ = 1.
A parametrization for IH2(0, 2, 1) is given by P1, with the glued subalgebras

{k[[(t1, 0), (0, t32), (0, t42), (0, t52)]], k[[(t1, 0), (0, t22 + at32), (0, t52)]] : a ∈ k}

and similarly IH2(2, 0, 1) is parametrized by P1, with the glued subalgebras

{k[[(t31, 0), (t41, 0), (t51, 0), (0, t2)]], k[[(t21 + at31, 0), (t51, 0), (0, t2)]] : a ∈ k}.

A parametrization for IH2(1, 1, 1) is a point, with the unique glued subalgebra being

k[[(t21, 0), (t31, 0), (0, t22), (0, t32)]].

Next are the Isom-Hilb components with τ = 2. For IH2(0, 1, 2), we know Hilb1(0, 2) is parametrized
by a point, and ter1(1) = {k[[t2, t3]]}, with Hilb(k[[t2, t3]], 2) parametrized by A1 t {pt} by Example
3.8. Hence Hilb1(0, 2) × Hilb1(1, 2) is parametrized by A1 t {pt}, so IH2(0, 1, 2) is parametrized by
(A1 t {pt})× (A1 \ {0}). The glued subalgebras are

{k[[(t1, ct
3
2), (t21, 0), (t31, 0), (0, t22 + at32)]], k[[(t1, ct

2
2), (0, t32), (0, t42)]] : a ∈ k, c ∈ k∗}.

Note that when c = 0 in each fiber, the glued subalgebras in IH2(0, 2, 1) are obtained, and when
c =∞, the glued subalgebra in IH2(1, 1, 1) is obtained.
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A symmetric construction shows that IH1(1, 0, 2) is parametrized by (A1 t{pt})× (A1 \ {0}), with
the glued subalgebras being

{k[[(t31, ct2), (t21 + at31, 0), (0, t22), (0, t32)]], k[[(t21, ct2), (t31, 0), (t41, 0)]] : a ∈ k, c ∈ k∗}.
When c = 0 in each fiber, the glued subalgebra in IH2(1, 1, 1) is obtained, and when c =∞, the glued
subalgebras in IH2(2, 0, 1) are obtained.

Lastly we compute IH2(0, 0, 3). Note that Hilb1(0, 3)×Hilb1(0, 3) is parametrized by a point, given
by the pair ((k[[t]], (t3)), (k[[t]], (t3))). Clearly this is a gluable pair, and its fiber in the Isom-Hilb
component is Autk(k[x]/(x3)) ∼= (A1 \ {0}) × A1. For each u ∈ k∗ and v ∈ k, the automorphism
ϕu,v is given by x 7→ ux+ vx2. Hence IH2(0, 0, 3) is parametrized by (A1 \ {0})×A1, with the glued
subalgebras being

{k[[(t1, ut2 + vt22), (0, t32), (0, t42), (0, t52)]] : u ∈ k∗, v ∈ k}.
We now compute the Plücker coordinates of all of these glued subalgebras when viewed as points

in G(8, 10), with respect to the basis

{(t1, 0), (0, t2), (t21, 0), (0, t22), (t31, 0), (0, t32), (t41, 0), (0, t42), (t51, 0), (0, t52)}.
We can easily check that the Isom-Hilb components of gluing dimension 1 and 2 form two copies of P2

intersecting at a point, namely the unique point in IH2(1, 1, 1). Each glued subalgebra in IH2(0, 0, 3)
can be viewed as the k-vector space

k{(t1, ut2 + vt22), (t21, u
2t22), (t31, 0), (0, t32), (t41, 0), (0, t42), (t51, 0), (0, t52)}

so by finding the maximal minors of the matrix

1 u 0 v 0 0 0 0 0 0
0 0 1 u2 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


we find that the Plücker coordinates of the points in IH2(0, 0, 3) form the affine patch x0 6= 0 on the
projective quadric surface Q = V (x0x2 − x2

1, x0x3 − x1x2) ⊂ P4. Thus

ter3
G(2) ∼= P2 ∪ P2 ∪Q

where P2∩Q ∼= P1 for each copy of P2, and the intersection of all three of these components is a point.
See Figure 3.
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