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A B S T R A C T   

The low-carbon transition in China’s power sector plays a crucial role in the mitigation of climate change 
worldwide, and increasing renewable energy penetration rate is widely recognized as the key approach to 
decarbonize this sector. This paper proposes a renewable energy penetration model to examine the feasibility for 
net zero emission by 2050 in China’s power sector taking into account of economic and social development. It 
also evaluates the impacts of carbon pricing and financial incentives on renewable energy penetration and 
carbon emissions. The results indicate that along with economic development, China’s electricity demand will 
continue to grow, but at a gradually slowing rate. It is possible for the power sector to achieve net zero emission 
by 2050 while meeting this growing electricity demand, with a renewable energy penetration rate of 75%. To 
ensure the achievement of the goal, we recommend setting the carbon price with the current market price as the 
baseline and increasing it annually by a relative increment index of 10%. Furthermore, given the high initial cost 
and late start of offshore wind power, we suggest incorporating associated grid connection cost into the trans
mission and distribution price to ensure the comprehensive and healthy development of renewable energy.   

1. Introduction 

To limit the extent of global temperature rise and reduce the adverse 
effects of climate change, the Paris Agreement requires countries to 
update their nationally determined contributions based on their 
respective national circumstances and to strive for maximum emission 
reductions [1]. In 2021, China’s energy consumption and carbon diox
ide emissions accounted for 26.5 % and 27 % of the world total, 
respectively [2,3]. As the world’s largest energy consumer and carbon 
emitter, the Chinese government updated its climate goals during the 
75th session of the United Nations General Assembly, aiming to peak 
carbon emissions before 2030 and achieve carbon neutrality by 2060 
[4]. Due to the increasing role of electricity in China’s energy use, the 
power sector accounts for nearly half of carbon emissions in the coun
try’s total, with an annual CO2 emissions of 4.5 billion tons [5]. 
Considering the challenges of achieving net zero emission in other in
dustrial sectors, it is imperative for China’s power sector to achieve net 
zero emission by 2050 in order to support the entire energy system in 
achieving carbon neutrality by 2060. It is evident that deep 

decarbonization of the power sector is crucial for China and the global 
energy system to reduce emissions [6]. 

Promoting the development of renewable energy is the most effec
tive way for the power industry to decarbonize [7]. Countries around the 
world have implemented various policies and measures with regard to 
renewable energy [8]. Three major tools are employed including the 
feed-in tariff (FIT), renewable portfolio standard, and the carbon emis
sions trading scheme (ETS) [9]. In comparison, existing researches 
generally consider FIT and ETS to be more effective [10,11]. Through 
the FIT policy, subsidies for renewable energy production increase, 
directly expanding the supply of renewable energy. The ETS internalizes 
the environmental cost of fossil fuels, indirectly enhancing the 
competitiveness of renewable energy prices. China initiated FIT policy 
for renewable energy in 2006, and thanks to the subsidy in the policy, 
the renewable energy installation in the country has witnessed dramatic 
growth over the past decade. As of 2022, the cumulative installed ca
pacity of renewable energy in the country reached 1,213 GW [12]. In 
addition, China has implemented the ETS and, in July 2021, launched a 
nationwide carbon emissions trading market, with the power sector 
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being the sole participating sector [13]. 
It’s worth noting that despite having the world largest renewable 

energy generation capacity, in 2022, only 31.3 % of China’s electricity 
supply came from renewable sources, and 58.4 % of electricity supply 
still coming from coal-fired units [12]. To achieve the net zero emission 
goal, profound transformations are required in the power system over 
the coming decades, with a continuous increase in the penetration of 
renewable energy. However, due to the growing pressure on subsidy 
payments, the central government discontinued national subsidies for 
new energy generation starting in 2021 [14]. Moreover, in 2022, the 
average carbon price in the national carbon market was only RMB¥55 
(about US$8) per ton, significantly less effective in incentivizing 
renewable energy compared to the discontinued electricity subsidies. 
Despite the substantial decrease in the cost of renewable energy gen
eration [15], it remains unclear whether renewable energy is competi
tive compared to traditional fossil fuels under current policies, given its 
unstable output and lower utilization hours. If the lower carbon price 
level results in inadequate penetration of renewable energy, it may pose 
a threat to the carbon reduction targets of the power sector. This paper 
seeks to develop a renewable energy penetration model, to explore the 
pathway for China’s power sector towards net zero emission and assess 
the policy efforts required for the development of renewable energy. 

Regarding the low-carbon transformation pathway in the power 
sector, there is a substantial amount of research that can be categorized 
into two main modeling approaches: top-down and bottom-up models 
[16]. Top-down models primarily focus on macroeconomic factors and 
study low-carbon transformation pathways based on certain economic 
assumptions, with an emphasis on the power sector. For instance, 
Hübler and Loschel [17] analyzed the low-carbon development road
map of the European Union using a computable general equilibrium 
(CGE) model at both macroeconomic and sectoral levels. Kai [18] con
ducted regression analysis and Monte Carlo simulations to study po
tential emission pathways at the sectoral level by calculating emissions 
from China’s economic sectors over the past 23 years. Tan [19] estab
lished a research framework using LMDI (logarithmic mean Divisia 
index) and STIRPAT (stochastic impacts by regression on population, 
affluence and technology) models to predict Chongqing’s carbon 
reduction potential, providing a comprehensive analysis of the current 
state, key influencing factors, and potential pathways for low-carbon 
transformation. Top-down models offer a distinct advantage in 
analyzing policy orientations related to macroeconomic operations but 
may somewhat weaken the role of technology as a driving force for 
policies and underestimate the market potential brought about by ad
vancements in energy technology. In contrast, bottom-up models start 
from a micro perspective, considering specific technical, economic, and 
environmental parameters to analyze energy supply and utilization. 
Some scholars have investigated the impact of certain key technologies 
on the low-carbon transformation of the power sector. Pina et al. [20] 
utilized the TIMES (The Integrated Markal-Efom System) model to 
simulate the role of demand response technology in the power system, 
indicating that demand-side management can significantly reduce in
vestments in renewable energy capacity and improve the operation of 
existing installed capacity. Huang et al. [21] proposed an integrated 
optimal power flow and multi-criteria decision model, thoroughly 
exploring the economic characteristics of energy storage system tech
nology on the integration of renewable energy and energy transition. 
Jakob et al. [22], using the EnergyPLAN tool, studied the impact of the 
coupling of waste heat utilization technology in the electricity, indus
trial, transportation, and other sectors on the efficiency and benefits of 
Europe’s energy transition. Some scholars have also modeled the entire 
power system, with HE et al. [6] developing the SWITCH-China model to 
study how the Chinese power system will evolve under carbon con
straints as the cost of renewable energy accelerates its decline. Zheng 
et al. [23] used the GREAN (Global Renewable-energy Exploitation 
ANalysis) platform to establish a power system planning model with a 
high share of renewable energy capacity to evaluate the impact of power 

supply cost related to China’s transition to carbon neutrality. Kamia 
et al. [24] assessed power sector pathways to net zero emission by 2050 
for the Association of Southeast Asia Nations using the Low Emissions 
Analysis Platform (LEAP). In the realm of low-carbon transformation in 
the power sector, bottom-up models can provide a more comprehensive 
description of energy substitution-related technologies and their envi
ronmental and economic impacts. 

Among the bottom-up models, the LEAP model developed by the 
Stockholm Environment Institute has been widely adopted by thousands 
of organizations in over 190 countries and regions due to its advantages 
in alternative predictions, quantitative dynamics, and policy settings 
[25]. It is extensively used for long-term forecasting and scenario 
analysis of energy demand and related environmental issues in inte
grated resource planning. Nnaemeka et al. [26] explored energy de
mand, supply, and related greenhouse gas emissions in Nigeria from 
2010 to 2040 based on scenario analysis; Nieves et al. [27] analyzed 
energy demand and greenhouse gas emissions generated in Colombia for 
the years 2030 and 2050; Nayyar et al. [28] conducted energy planning 
for Pakistan from 2015 to 2050, considering resource potential, techno- 
economic parameters, and carbon dioxide emissions. Recently, the LEAP 
platform has introduced energy storage modeling and the NEMO (the 
Next Energy Modeling System for Optimization) optimization frame
work, shifting the research focus from energy utilization on the demand 
side to energy planning on the supply side and its environmental and 
economic benefits. It is particularly worthy noting that despite its 
widespread use, there is still limited publication on utilizing the latest 
functionalities to simulate supply-side energy planning, especially in the 
context of China’s power system planning and optimization [29,30]. 

While the aforementioned studies have contributed to understanding 
the low-carbon transformation pathways in the power sector, they have 
not conducted a quantitative analysis of the impacts of different policies 
on the transformation. A few models [31–34] have begun to assess 
policies, such as Lin et al. [31] which used an improved dynamic 
recursive CGE model to investigate the effects of different carbon price 
levels on energy, the environment, and the economy, and recommended 
maintaining the carbon price at $10/t, gradually increasing it to $20/t. 
However, these evaluations have been primarily based on top-down CGE 
models, with very few bottom-up electricity system models. Such 
research takes a macroeconomic perspective on energy issues and may 
not effectively provide policy guidance specific to the power sector. In 
the EU where carbon and electricity markets are more mature than 
China, carbon price has reached €80/t. It is worth discussing whether 
the carbon prices obtained from top-down models can promote a high 
penetration of renewable energy in China. Additionally, some renewable 
energy sources in China currently have relatively high costs, and 
phasing-out FIT due to fiscal pressures does not imply that renewable 
energy no longer requires support. The question of how to achieve 
effective development after subsidy removal has not been addressed in 
the aforementioned research. 

To fill the literature gaps, we develop a new research framework that 
integrates a comprehensive quantitative assessment, employing a 
bottom-up modeling approach, of the carbon pricing policies and 
financial incentive measures required for achieving net zero emission in 
the Chinese power sector. This framework takes into account both the 
demand and supply sides of electricity, serving as a comprehensive, 
data-intensive dynamic model with functionalities such as electricity 
demand forecasting, power generation mix optimization, carbon emis
sions analysis and policy effectiveness assessment. In comparison to 
previous bottom-up studies exploring net-zero emission pathways, our 
framework adds a quantitative assessment of the required policy strin
gency. Unlike top-down studies, this framework allows for a compre
hensive analysis of specific supply, conversion, and utilization 
technologies in the power sector and their economic and environmental 
benefits, thus providing more tailored support policies for the power 
sector. 

In summary, the primary contributions of this paper are as follows: 
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(1) Based on environmental and techno-economic optimization analysis, 
we develop a model for the penetration of renewable energy sources in 
China using the LEAP platform and its NEMO framework. We also set a 
high carbon price policy scenario, under which two carbon pricing 
mechanisms are designed. Taking the advantages of the LEAP model in 
policy research and its latest supply-side energy planning capabilities, 
we provide a design framework for other modelers to evaluate policy 
effectiveness required for achieving net zero emission in the power 
sector using a bottom-up approach; (2) To discuss the goal of achieving 
net zero emission in the power sector, we quantify the environmental 

and economic impacts of different carbon pricing mechanisms, as well as 
the influence of subsidies and preferential policies on the penetration of 
high-cost renewable energy sources. This addresses the shortcomings of 
current top-down models that analyze energy issues across multiple 
sectors, rather than focusing on the power sector. It helps gain a 
comprehensive understanding of the costs associated with renewable 
energy policies, aiding policymakers in formulating more cost-effective 
and socially attractive transformation policies. 

The rest of this manuscript is organized as follows. In Section 2, the 
research methodology is provided, including the research framework, 

Fig. 1. Modelling framework for renewable energy penetration.  
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model used, data sources, and scenario design. Section 3 presents the 
results, including electricity demand, capacity and cost of individual 
power source and optimization in each scenario. Section 4 discusses the 
findings, while Section 5 presents the conclusions and policy 
implications. 

2. Research methodology 

2.1. Research framework 

The research framework of this paper is shown in Fig. 1. For a 
comprehensive assessment of renewable energy penetration and emis
sions reduction in the future power system under the goal of net zero 
emission in the power sector, we develop the Renewable Energy Pene
tration (LEAP-REP) model based on the LEAP platform. The model 
consists of four modules: the electricity demand forecasting module, the 
power generation mix optimization module, the carbon emissions 
analysis module, and the policy assessment module. The electricity de
mand forecasting module predicts changes in China’s electricity demand 
by industry based on macroeconomic driving factors such as gross do
mestic product (GDP), population, urbanization level, and industrial 
structure. The power generation mix optimization module evaluates the 
environmental and techno-economic performance of different genera
tion technology categories based on their costs and efficiencies, and 
simulates the optimal power generation mix considering seasonal and 
daily variations in demand and supply. The carbon emissions analysis 
module calculates and compares the carbon emissions of the power 
system under different scenarios, and analyzes the cost of emissions 
reduction. The policy assessment module evaluates the impact of carbon 
pricing policies and financial incentive instruments on the development 
of renewable energy and carbon emissions reduction through scenario 
analysis. 

To examine the feasibility of achieving net zero emission in the 
power sector by 2050 and the required policy stringency, we establish 
four scenarios: the business-as-usual scenario (BAU), net zero emission 
scenario (NZE), high carbon price scenario (HCP), and financial incen
tive instrument scenario (FII). By simulating the BAU and NZE, we 
investigate the feasibility of achieving net zero emission by 2050 in the 
power sector while meeting the development needs of China. Through 
simulating the HCP and FII, we assess the impacts of policy stringency on 
achieving net zero emission in the power sector. Furthermore, consid
ering the challenge of implementing carbon prices significantly higher 
than the current market price, in the HCP we design two carbon pricing 
mechanisms: linear growth and exponential growth. We assess the 
impact of different carbon price levels under each of these mechanisms 
on carbon emissions in the power sector. Since this study focuses on the 
penetration of renewable energy, the electricity demand mainly reflects 
the economic and social development needs. Therefore, the scenario 
design starts from the power generation mix optimization module, 
meaning that the electricity demand forecasting results under different 
scenarios are consistent. The following sub-sections elaborate the LEAP- 
REP model, scenario design, and basic data sources respectively. 

2.2. LEAP-REP model 

2.2.1. Electricity demand forecasting module 
Electricity demand is driven by two high level exogenous variables: 

population and GDP, and is predicted through LEAP [35]. The LEAP 
model is a bottom-up end-use energy consumption model, including 
sectors such as household, agriculture, commerce, industry, and trans
portation in society. The LEAP model can simulate in detail the devel
opment paths of all these sectors. Therefore, it is widely used in energy 
policy analysis and climate change mitigation assessments [36]. 

In the household sector, electricity demand is divided into urban and 
rural residents’ electricity demand for living, mainly including lighting, 
home appliances, and heating. The electricity demand in agricultural 

sector is mainly based on the value-added agricultural production. The 
electricity demand in industrial sector accounts for the electricity de
mand of manufacturing, mining, construction, and other industries. The 
commercial sector takes into account of the electricity demand in ter
tiary industry such as wholesale, retail, accommodation, catering, 
finance, and real estate. The transportation sector considers the elec
tricity demand of railways, roads, and other transportation modes, based 
on the turnover or electric vehicle mileage conversion. 

When calculating with the LEAP model, the terminal electricity de
mand is mainly determined by the product of activity level and elec
tricity consumption intensity. The activity level is closely related to the 
strength of electricity consumption activities in each sector, and can 
fully reflect the dynamic changes in energy consumption of energy-using 
objects. electricity consumption intensity is the amount of electricity 
consumption generated by a unit activity level, reflecting the efficiency 
of energy use. The specific calculation formula of terminal electricity 
demand is as follows: 

E =
∑

a

∑

b
Ab,a × Ib,a (1) 

Where, E represents the total electricity demand; Ab,a represents the 
activity level of each sector; Ib,a represents the electricity consumption 
intensity; a represents different sectors; b represents end-use devices. 

In addition, considering the impact of climate change, we use the 
Representative Concentration Pathways (RCP) scenario proposed by the 
Intergovernmental Panel on Climate Change (IPCC) to estimate changes 
in China’s electricity demand. Given the assumption of proactive 
emission reduction measures in this paper, the prediction is based on the 
RCP2.6 scenario. According to Fan’s research [37], there is a significant 
correlation between climate and electricity demand. Under the RCP2.6 
scenario, the growth in China’s electricity demand due to climate factors 
is estimated to be approximately 7.72 TWh/decade. Following Kamia’s 
approach [38], the impact of climate change is integrated into the 
electricity demand forecasting module of the LEAP model. 

2.2.2. Power generation mix optimization module 
The power generation mix optimization module first calculates the 

annual electricity generation of the power system based on the predicted 
power demand results, taking into account of the losses in the trans
mission and distribution process. Then, by comparing the generation 
costs of different fuel types, the module determines the minimum cost 
expansion and power dispatching of the power system for each year 
within the research timeframe. Based on China’s resource endowment 
and the historical generation of various power sources, the power 
sources considered in this study consist of onshore wind, offshore wind, 
solar photovoltaic (PV), hydro, nuclear, natural gas, coal, natural gas 
carbon capture and storage (CCS) and coal CCS. In addition, as energy 
storage technology can transfer electricity and facilitate supply–demand 
balance, this study also considers two types of energy storage: tradi
tional pumped hydro storage and new types of Li-ion battery energy 
storage system (Li-BESS), with the optimization process only consid
ering daily carryover. 

Optimization covers all modelled time periods. Due to the significant 
impact of climate conditions on power generation, especially for hy
dropower, this study divides each year into two seasons, wet and dry. 
For each season, a detailed hourly system load curve and various power 
generation curves are further established to simulate the optimization 
process of annual electricity supply and demand. This approach ensures 
that the power generation mix optimization meets not only the total 
electricity demand but also the demand at each time. 

Optimization is solved by NEMO, a high-performance, open-source 
energy system optimization tool designed under the project of the En
ergy Modeling Program at the Stockholm Environment Institute. NEMO 
simulates an energy system through least-cost optimization with perfect 
foresight. Essentially, this means it seeks to meet energy and power 
demands over time at the lowest possible cost. The cost minimization 
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function operates on discounted costs (all costs are discounted to the 
beginning of the simulation). The costs include investment cost, fixed 
operating cost, variable operating cost, fuel cost, environmentally- 
related carbon emission cost and subsidy. The dynamic accounting 
model for electricity generation of various power sources can be 
expressed as follows: 

CT
j =

∑n

i=1

(
CAnew

i,j × CI
i,j + CAT

i,j × CFO
i,j

)
×

1
(1 + r)i

+
∑n

i

∑2

k=1

∑24

t=1

(
CVO

i,j + CF
i,j + CE

i,j − IF
i,j

)
× GEi,j,k,t × Dk ×

1
(1 + r)i

(2)  

CAT
i,j = CAhistory

j +
∑

i− 1
CAnew

i,j (3) 

Where, j represents different types of power sources, including 
onshore wind, offshore wind, solar PV, hydro, nuclear, natural gas, coal, 
CCS, pumped hydro storage and Li-BESS; CT

j represents the total cost of 

electricity generation for a given power source; CAhistory
j , CAT

i,j, CAnew
i,j 

represent the historical installed capacity, cumulative installed capacity 
in year i, and newly added installed capacity in year i for power source j; 
CI

i,j, CFO
i,j , CVO

i,j , CF
i,j, CE

i,j, IF
i,j represent the unit investment cost, fixed oper

ating cost, variable operating cost, fuel cost, carbon emissions-related 
environmental cost and subsidy income of power source j in year i, 
respectively. Whilst the investment cost and fixed operating cost are 
associated with the capacity, other costs are associated with the elec
tricity generation; k represents the season, with this paper being divided 
into two seasons: wet and dry; Dk is the number of days in each season 
within a year; t represents hours; GEi,j,k,t represents the electricity gen
eration of power source j in the i-th year, k season, and t hour; r is the 
discount rate; n is the calculation period. 

The optimization objective of the model is to minimize the dis
counted total cost of the power system, which includes investment costs 
and operational costs for various types of power sources, among other 
factors. The objective function can be expressed as: 

minTC = min
∑J

j=1
CT

j (4) 

Where, TC represents the present value of total cost of the power 
system; J is the number of types of power sources. The optimization 
process takes into account the following important constraints. 

First, the constraint of power system balance. This ensures that the 
electricity generated by each source in each hour can meet the demand 
for various types of electricity. The constraint conditions are expressed 
as: 

∑J

j=1
GEi,j,k,t × (1 − loss) =

∑

a

∑

b
Eb,a,t (5)  

GEi,j,k,t⩽CAT
i,j × MAk (6) 

Where, loss represents the line loss rate for transmission and distri
bution; Eb,a,t represents the electricity demand for end-use devices in the 
t-th hour; MAk represents the maximum utilization hours for season k. 

Second, the constraints on power source capacity expansion. In 
response to the expected termination of subsidies for non-hydropower 
renewable energy in 2021, there was a rush of new energy in
stallations in 2020. From the perspective of the rush of new installations, 
due to the constraints of materials, equipment, and other production 
capacities, the capacity addition of power sources each year is limited. 
Therefore, based on the capacity addition of each type of power source 
in the rush year and the historical capacity addition, the maximum ca
pacity addition constraint is set for each power source. In that case, the 
following constraints exist: 

CAnew
i,j ⩽CAmax

j (7) 

Where, CAmax
j is the maximum annual additional capacity for power 

source j. 
Third, the constraint on carbon emissions. Since different scenarios 

imply different carbon emissions reduction targets, different carbon 
emission constraints are thus set to simulate the optimization process to 
study the impact of different incentives and policies on the development 
of renewable energy under carbon emission constraints. The carbon 
emission constraint can be expressed as: 

CET
i ⩽CEmax

i (8) 

Where, CET
i is the carbon emissions of the electricity system in year i; 

CEmax
i is the carbon emissions limit for year i. 
Additionally, the optimization process also considers constraints 

related to the reliability of the power system, energy storage charge and 
discharge constraints, among others. 

The model developed in this study can utilize various solvers such as 
Cbc, GLPK, HIGHS, CPLEX, Mosek, and more through NEMO. Given the 
complexity of the simulations in this research, the high-performance 
mathematical optimization solver software CPLEX Optimizer devel
oped by IBM is employed for solving. 

2.2.3. Carbon emissions analysis module 
The carbon emissions in the power system mainly come from the 

combustion of fossil fuels. Among the power sources studied in this 
paper, only coal-fired and gas-fired power plants emit carbon due to the 
combustion of fossil fuels, while other power sources are clean energy 
sources and have negligible carbon emissions. Therefore, after deter
mining the amount of energy generated by fossil fuel power generation 
within the research time frame, the carbon emissions of the power sys
tem can be calculated based on the emission factors of different energy 
sources (carbon emissions per unit of energy), as shown in the following 
formula: 

CET
i =

∑J

j=1

∑2

k=1

∑24

t=1

1
fj
× CFj × GEi,j,k,t × Dk (9)  

CFj = CCj × OFj × 44/12 (10) 

Where, fj is the energy efficiency of power source; CFj represents the 
energy conversion carbon emission coefficient of power source j; 
CCj、OFj respectively represent the carbon content and carbon oxida
tion rate of the unit heat value of fossil fuels consumed by the power 
source j; 44/12 is the ratio of the relative molecular weight of carbon 
dioxide to carbon. 

2.3. Data sources 

The data used in this study mainly come from national statistics. The 
data that cannot be obtained from national statistics are obtained 
through investigation, literature review, and the reports of various 
research institutions as shown in Table 1, and specific data values are 
provided in Appendices A and B. Based on the description of the model 
in Section 2.2, this subsection describes the basic data required for the 
three modules. 

The most basic parameters for the electricity demand forecasting 
module are GDP and population, the historical data of which are sourced 
from the National Bureau of Statistics [39], and the change trend of 
which is based on Goldman Sachs’ China 2023 Outlook [40] and the 
United Nations World Population Prospects 2022 [41]. As noted in 
Section 2.2.1, the terminal electricity demand is determined by the ac
tivity level and energy intensity. The data required for calculating the 
activity level, such as the urban population, rural population, value- 
added of various industries, converted turnover data, and the electric 
vehicle driving mileage, are from the National Bureau of Statistics, the 
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National Railway Administration of the People’s Republic of China [42], 
and the Ministry of Public Security of the People’s Republic of China, 
respectively. In addition, the power consumption intensity data required 
for calculating the energy intensity is collected from the China Electric 
Power Yearbook [43]. 

The data required for the power generation mix optimization module 
include, but is not limited to, historical installed capacity and power 
generation for different types of power sources, various costs, discount 
rate, system load curves, different power source generation curves, and 
maximum annual new installed capacity. Among them, historical 
installed capacity and power generation data, as well as annual 
maximum new installed capacity, are collected from the China Electric 
Power Yearbook [43]. Investment cost, operating cost, and fuel cost are 
obtained through investigation, and cost trends are based on the “2022 
Annual Technology Baseline (ATB) Cost and Performance Data for 
Electricity Generation Technologies” [44] published by National 
Renewable Energy Laboratory in the USA and “Technology Data – 
Generation of Electricity and District heating” [45] published by Danish 
Energy Agency. Carbon emission cost is based on the average carbon 
price in China’s national carbon market in 2022, which was about RMB 
55/t. The discount rate is represented by the prime loan rate from the 
People’s Bank of China, which is 4.99 %. In this study, we take 5 %, very 
close to 4.99 %. System load curves and power generation curves are 
obtained through investigation. 

The carbon emission analysis module uses technology and environ
mental databases embedded in LEAP as environmental parameters 
which provide IPCC Tier 1 emission factors for different fuels. 

2.4. Scenarios design 

To achieve the net zero goal in the power sector, four scenarios (BAU, 
NZE, HCP and FII) are designed for simulation with 2015 as the base 
year, 2022 as the start year, and 2050 as the end year, to study the effects 
of different policies on renewable energy penetration and carbon 
emissions. The key assumptions of these scenarios are summarized in 
Table 2. 

(1) Business-as-usual scenario (BAU). BAU assumes a continuation of 

current policies and a downward trend in the cost of renewable energy 
worldwide. Carbon emissions constraints are not set, and power supply 
is optimized based solely on the cost of each power source. 

(2) Net zero emission scenario (NZE). NZE examines the feasibility of 
achieving net zero emission in the power sector by 2050 while ensuring 
the developmental needs of China. Based on BAU, this scenario sets the 
net zero emission target for the power sector as a hard constraint in the 
power generation mix optimization. This allows for the calculation of 
the required penetration of renewable energy to achieve net zero. 

(3) High carbon price scenario (HCP). HCP assesses the impact of 
carbon pricing on the optimization results. Building upon the design of 
NZE noted above, this scenario removes the hard constraint on carbon 
emissions and instead optimizes the power generation mix by increasing 
carbon emission prices. This approach determines a reasonable carbon 
price required to achieve the net zero emission by 2050 in the power 
sector. 

In practice, setting a carbon price that is several times the current 
market price is not very feasible for any economy. Therefore, we design 
two incremental carbon pricing mechanisms: a linear growth mecha
nism and an exponential growth mechanism with the current carbon 
market price as the baseline, as illustrated in Fig. 2. 

Both carbon pricing mechanisms use the current carbon market price 
as the base price. The key difference between the two is that in the linear 
growth mechanism the carbon price increases each year by a constant 
absolute increment, while in the exponential growth mechanism the 
carbon price increases each year by a constant relative increment. The 
expressions for the carbon price in the two growth system are as follows: 

Pl = P0 + a × (n − 2021) (11)  

Pe = P0 × (1 + b)n− 2021 (12) 

Where, Pe and Pl represent the carbon prices for the linear growth 

Table 1 
Summary of model basic data.  

Demand data Source Supply data Source 

GDP National data  
[39], China 
2023 Outlook  
[40] 

Historical installed 
capacity and 
power generation, 
maximum 
capacity addition 

China Electric Power 
Yearbook [43] 

Population National data  
[39], World 
Population 
Prospects 2022  
[41] 

Investment cost, 
operation cost, 
and fuel cost 

Investigation, 2022 
ATB Cost Data for 
Electricity 
Generation 
Technologies, 
Technology Data – 
Generation of 
Electricity and 
District heating  
[44,45] 

Value-added of 
various 
industries 

National data  
[39] 

Carbon emission 
cost 

National carbon 
emissions trading 
market 

Converted 
turnover 

2021 Railway 
Statistical 
Yearbook [42] 

Discount rate Loan Prime Rate from 
the People’s Bank of 
China 

Electric vehicle 
driving 
mileage 

he Ministry of 
Public Security 
of the People’s 
Republic of 
China 

System load curves 
and power 
generation curves 

Investigation 

Power 
consumption 
intensity 

China Electric 
Power Yearbook 
[43]    

Table 2 
Key assumptions of scenarios.  

Scenario Binding carbon 
emissions 
targets 

Carbon 
price 
increase 

Financial incentives 

BAU No No No 
NZE Zero carbon 

emissions by 
2050 

No No 

HCP No Yes No 
FII No Yes Provide certain financial incentives 

to renewable energy sources that 
have an important development 
status and are relatively expensive  

Fig. 2. Carbon price growth mechanism illustration.  
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mechanism and the exponential growth mechanism, respectively; P0 is 
the initial carbon price; n is the calculating year; a, b represent absolute 
increment and relative increment respectively. 

(4) Financial incentive instrument scenario (FII). FII evaluates the 
influence of financial incentives for renewable energy on the optimiza
tion results. Building upon the design of HCP, this scenario maintains the 
high carbon price setting while providing certain incentives for impor
tant but high-cost renewable energy sources for the purpose of 
enhancing the penetration of such renewable energy sources and pro
mote the comprehensive development of renewable energy. 

Since 2021, China has discontinued national subsidies for new en
ergy generation. However, due to the later development and higher costs 
associated with offshore wind power in China, certain coastal provinces 
are planning to provide local subsidies to promote the development of 
new offshore wind power projects. For example, the Guangdong pro
vincial government is offering subsidies for offshore wind power pro
jects that are fully connected to the grid from 2022 to 2024. The 
standards for these subsidies are 1,500, 1,000 and 500 RMB/kWh [46]. 
Additionally, the Shandong provincial government has proposed sub
sidies for floating offshore wind projects that are built and connected to 
the grid from 2022 to 2025. The subsidy rates for these projects are 
1,000, 800, 600 and 400 RMB/kWh [47]. 

Given the financial tightness faced by local governments due to the 
pandemic, raising subsidy would impose considerable pressure on them. 
Therefore, we suggest adopting a model similar to the European offshore 
wind power investment model, where offshore wind power projects are 
categorized into main projects and grid-connected supporting projects. 
The investments in grid-connected supporting projects include funding 
for offshore substations, offshore converter stations, onshore control 
centers, among others. These costs, constituting approximately 25 % of 
the total investment, are borne by the grid company and are incorpo
rated into the transmission and distribution tariff. Essentially, this shifts 
the cost from the power generation companies to the consumers. 

Building on the analysis provided, the FII will be structured to 
include two sub-scenarios: the local subsidies scenario and the invest
ment pattern optimization scenario. This study aims to investigate 
financial incentive policies that facilitate the holistic development of 

renewable energy. 

3. Results 

3.1. Electricity demand 

First, the electricity demand forecasting module was executed to 
obtain the electricity demand in China from 2015 to 2050, as shown in 
Fig. 3. The data for 2015–2021 represent historical data, while the data 
for 2022–2050 are the forecast results. Among them, the predicted total 
electricity demand for the year 2022 is 8,513 TWh. According to the 
latest results from the China Electric Power Yearbook, the total electricity 
consumption for the entire society in China in 2022 was 8,637 TWh. The 
difference between the two number is only 1.43 %, demonstrating a high 
level of predictive accuracy. 

From the perspective of total electricity demand, whilst it will 
continue to grow, its growth rate will gradually slow down. By 2030, 
2040, and 2050, the electricity demand will reach 10,405 TWh, 12,561 
TWh, and 14,096 TWh respectively. The per capita electricity demand 
will increase from 7,712 kWh in 2021 to 10,752 kWh in 2050, which 
falls between the current levels of highly energy-efficient countries like 
Japan and Germany and high-energy-consuming countries like the 
United States and Canada. The forecast results are close to the “China 
Generation Development Analysis Report” [48] by the State Grid Energy 
Research Institute. 

From the perspective of each sector, the proportion of electricity 
demand in each sector is shown in Fig. 4, of which the industrial sector 
has the largest share, followed by residential and commercial sectors. 
Nevertheless, the proportion of the industrial sector will gradually 
decrease from 73 % in 2015 to 46 % in 2050, mainly due to the decrease 
in the proportion of industrial value-added and the gradual reduction in 
energy consumption resulting from industrial restructuring, whilst the 
proportion of residential and commercial electricity demand will 
respectively increase from 13 % and 11 % in 2015 to 26 % and 18 % in 
2050, due to the increase of residential electrification level and the 
value-added in the tertiary industry. The transportation sector has the 
fourth highest share of electricity demand. Given the increase of electric 

Fig. 3. Forecast results of electricity demand in the whole society.  
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vehicles and the electrification rate of railways, the proportion is ex
pected to increase from 2.00 % in 2015 to 8.67 % in 2050. The agri
cultural sector has the smallest share of electricity demand. Although its 
electrification level will increase, its proportion in the country’s total 
electricity demand will remain basically unchanged due to the decrease 
of its proportion in the value-added. 

3.2. Power generation techno-economic characteristics 

In the power generation mix optimization module, the number of 
operating hours and generation costs are the most important factors 
determining the expansion of power capacity. The capacity and costs 
required for adding a single fuel-type power source are calculated and 
compared with the power source mix optimization to analyze the 
techno-economic characteristics of different fuel-type power sources, 
laying the foundation for optimizing the power generation mix in 
various scenarios. 

The estimation of the capacity and cost of individual power source 
proceeds as follows: First, input the lifecycle and yearly cost data of 
different power sources, then import the load change curve and 

renewable energy generation curve in typical wet and dry seasons, 
respectively. Finally, calculate the capacity and cost required to meet 
the annual electricity demand for individual and combined power 
source. The required installed capacity and cumulative cost results by 
2050 are shown in Figs. 5 and 6 respectively. In these figures, “Combi
nation” represents the optimization results of power source combina
tion, including all the power sources mentioned in Section 2.2.2, namely 
onshore wind, offshore wind, PV, hydro, nuclear, natural gas, coal, 
natural gas CCS and coal CCS, while “Coal only”, “Hydro only”, and 
others represent the optimization results of individual power sources. 
Furthermore, given that solar PV does not generate power at night, and 
relying solely on it cannot fulfil the electricity demand, optimization 
becomes unfeasible. Therefore, this section does not analyze solar PV. 

The capacity calculation results show that, due to different operating 
hours, the necessary installed capacity of nuclear is the smallest based 
on the combined optimization capacity. It is followed by coal and nat
ural gas power (including CCS), while the accumulated capacity 
required for onshore wind power, hydropower, and offshore wind power 
is relatively large. This is primarily attributed to the impact of weather 
conditions on renewable energy generation, leading to lower annual 

Fig. 4. Proportion of electricity demand by industry.  

Fig. 5. Results of the installed capacity for individual power source and combination.  
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operating hours. Consequently, more installed capacity is needed to 
meet the same electricity demand. In addition, despite hydropower has 
slightly higher annual average utilization hours than offshore wind 
power, the reduced low hydropower generation during the dry season 
necessitates a higher total installed capacity to meet the electricity de
mand. This can partially explain the power shortage in China’s south
west Sichuan Province in 2022. 

Further analysis of the cost calculation results reveals that by 2050, 

the scenarios with the lowest to highest cumulative costs are ranked in 
the following order: the power generation mix, nuclear power, coal 
power, onshore wind power, hydropower, natural gas power, coal CCS, 
natural gas CCS, and offshore wind power. In this ranking, the power 
generation mix has the lowest cost because it optimizes various power 
source combinations, validating the model’s effectiveness. Although 
nuclear power has a high per-unit investment cost, it has lower total 
investment cost resulting from its smaller required capacity, as well as 

Fig. 6. Results of the cumulative generation cost for individual power source and combination. Including the generation costs of historical installed capacity prior 
to 2021. 

Fig. 7. Optimization results of capacity and power generation for BAU. (a) Absolute values of capacity; (b) Percent shares of capacity; (c) Absolute values of power 
generation; (d) Percent shares of power generation. 
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its lower fuel costs compared to coal and natural gas power generation. 
Natural gas power, despite having a low investment cost, faces higher 
fuel cost due to China’s resource constraints, marked by “shortage in 
natural gas and oil but abundance in coal” [49]. These fuel costs 
constitute over 70 % of the total power generation cost, resulting in a 
higher cumulative cost. Coal CCS and NG CCS have higher cumulative 
costs due to the substantial investment cost of CCS technology and 
variable cost associated with carbon capture. They are ranked just after 
offshore wind power, which has the highest investment and fixed cost. 

The costs of three renewable energy sources, namely, offshore wind, 
onshore wind, and hydro, are also compared. Although offshore wind 
requiring the least cumulative installed capacity, its high unit invest
ment and operation costs result in the highest overall cost. Conversely, 
although onshore wind requires the highest cumulative installed ca
pacity, its low unit investment and operation costs lead to the lowest 
overall cost. 

3.3. Business-as-usual (BAU) scenario 

In the BAU scenario, the optimized results for installed capacity and 
the capacity proportions for various power sources are shown in Fig. 7 
(a) and (b). These results align with the cost analysis in Section 3.2. From 
2022 to 2027, the majority of newly added power sources are low-cost 
coal power, reflecting the cost-effective option during that period. As 
the cost of renewable energy generation decreases, starting in 2028, 
onshore wind power and PV gradually replace coal power as the main 
sources of development. By 2050, their installed capacity would grow to 
1,622 GW and 2,067 GW, representing 26 % and 33 % of the total 
installed capacity, respectively. Among other power sources, nuclear 
power and hydropower will see steady growth, with installed capacity 
reaching 285 GW and 579 GW, respectively, by 2050. Natural gas 
power, offshore wind power, and CCS, constrained by high generation 
costs, will experience limited growth. In terms of energy storage, pum
ped hydro storage is prioritized from 2022 to 2029. During this period, 
although the cost of pumped hydro storage is slightly higher than that of 
Li-BESS, it has a lifespan of over 40 years, far exceeding the 15-year 
lifespan of Li-BESS technologies, giving it a competitive advantage. 
However, given that the cost of Li-BESS will continue to decline due to 
technology advancement, and pumped hydro storage is limited by fac
tors like site resources, leading to increasing costs, it is evident that 
starting from 2030, the cost of Li-BESS will become more competitive 
than pumped hydro storage, even though they have lifespan disadvan
tage. By 2033, Li-BESS would outperform pumped hydro storage in 
terms of cost-effectiveness. 

The optimized results for the annual electricity generation and the 
proportions for different power sources are shown in Fig. 7(c) and (d). 
Over the research period, renewable energy has an average annual 
electricity generation of 4,439 TWh, accounting for 41 % of the total 
electricity generation. By 2050, this figure will increase to 8,363 TWh, 
representing 59 % of the total electricity generation. Among these, 
onshore wind power generates 3,438 TWh, PV generates 2,747 TWh, 
and hydropower generates 2,099 TWh, accounting for 24 %, 19 %, and 
15 %, respectively. Coal power has an average annual electricity gen
eration of 5,164 TWh, making up 48 % of the total electricity generation. 
By 2050, its electricity generation decreases to 4,041 TWh, constituting 
28 % of the total electricity generation. 

The carbon emissions in the BAU scenario are calculated based on 
the optimized results for power generation mix and various energy 
sources emission factors, as shown in Fig. 11(a). Over time, carbon 
emissions in the baseline scenario will increase from 3,572.6 Mt in 2015 
to a peak of 5,328.4 Mt in 2028, and will gradually decline to 3,476.1 Mt 
in 2050, reaching a level similar to the year 2015. However, it remains 
far from achieving the goal of net zero emission in the power sector. 

3.4. Net zero emission (NZE) scenario 

In the NZE scenario, the optimized results for the capacity and the 
proportion of various types of power sources are shown in Fig. 8(a) and 
(b). In this scenario, coal power will be phased out, with only 164 GW 
remained by 2050, accounting for 2 % of the total installed capacity. 
Renewable energy sources such as wind and solar will see further 
expansion. Both onshore wind and PV power will witness rapid growth 
starting from 2022, with installed capacities reaching 2,042 GW and 
2,227 GW, respectively, by 2050. Offshore wind power will also see 
significant development, with an installed capacity of 477 GW by 2050. 
Due to the increased share of renewable energy sources with lower ca
pacity factors, the cumulative installed capacity of the power system in 
this scenario will grow by 17 % compared to the baseline scenario. 
Nuclear power and hydroelectric power maintain stable growth in this 
scenario, with increased installed capacities compared to the baseline 
scenario, reaching 285 GW and 687 GW by 2050, respectively. Addi
tionally, due to cost factors, CCS, which was not developed in the 
baseline scenario, will begin to expand in 2033. By 2050, the installed 
capacities of coal CCS and natural gas CCS will reach 728 GW and 97 
GW, respectively. The development of energy storage will be consistent 
with the baseline scenario, as it is influenced by the increasing capacity 
of renewable energy sources. 

Concerning electricity generation, as shown in Fig. 8(c) and (d), by 
2050, the electricity generation from coal and natural gas without car
bon capture technology will be reduced to zero. The electricity gener
ation from coal CCS and natural gas CCS will reach 1,955 TWh and 47 
TWh, respectively, combined accounting for 14 % of the total electricity 
generation. Renewable energy sources will contribute 10,734 TWh of 
electricity, representing 75 % of the total electricity generation. This 
result aligns with our expectations and reinforces the idea that decar
bonizing the power system hinges on reducing fossil fuel consumption 
and significantly increasing the use of renewable energy. However, as 
the share of large-scale renewable energy generation continues to grow, 
the power system will face significant challenges in matching supply and 
demand, necessitating substantial energy storage capacity. From the 
typical daily load dispatch curve for 2050 (Fig. 9), it is evident that 
energy storage will become a critical dispatch resource in the future. It 
will play a pivotal role in balancing the power system, ensuring stability, 
and accommodating the increased use of renewable energy. 

In terms of carbon emissions, under the NZE scenario, there is a 
significant reduction in carbon emissions from the power system, ulti
mately achieving zero emissions by 2050. When considering the total 
carbon emissions, from 2022 (the first year of the modeling period) to 
2050, the cumulative carbon emissions in the NZE scenario amounts to 
71,780.66 Mt (Fig. 11a), a reduction of 60,233.16 Mt carbon emissions 
from 132,013.82 Mt which is approximately 46 % of the total emissions 
in the BAU scenario. 

3.5. High carbon price (HCP) scenario 

In the HCP scenario, the carbon emissions of the power system are 
calculated under the linear growth mechanism and the exponential 
growth mechanism, as designed in Section 2.3 (3). The results are shown 
in Fig. 10. Evidently, carbon emissions from the power system will 
gradually decrease as the carbon price increment increases under both 
mechanisms. However, when power system carbon emissions drop to 
below 100Mt by 2050, further increasing the carbon price increment 
will have a less significant effect on reducing emissions. For instance, 
under the linear growth mechanism, when the absolute increment is 
$2.75 per year, power system carbon emissions in 2050 will be 52.93 
Mt. If the absolute increment is raised to $3 per ton per year, the 
emissions will be reduced to 36.49 Mt, a decrease of only 16.44 Mt. More 
convincingly, under the exponential growth mechanism, when the 
relative increment is 10 % per year, carbon emissions in 2050 will be 
64.37 Mt. If the relative increment increases to 10.5 % per year, the 
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emissions will amount to 61.21 Mt, a decrease of only 3.16 Mt. At this 
point, we believe the carbon pricing mechanism is one at which net zero 
emission can be achieved, and any remaining emissions can be elimi
nated through administrative measures. The carbon price mechanism 
under these conditions is as follows: the linear growth mechanism starts 
with a base price of $8/t in 2021 and increases by $2.75/t each year, 
reaching $87.75/t by 2050. The exponential growth mechanism starts 
with a base price of $8/t in 2021 and increases by 10 % each year, 
reaching $127/t by 2050. 

Continuing the comparison of the total cost of power system under 
the two carbon pricing mechanisms, as shown in Fig. 11(b). It can be 
seen that in the initial years of implementing high carbon pricing pol
icies, the cost incurred in the exponential growth mechanism are much 
lower than those in the linear growth mechanism and are close to the net 
zero emission scenario. However, in the subsequent years, the cost in the 
exponential growth mechanism gradually exceed those in the net zero 

emission scenario, reaching a point of convergence around 2040, and 
then surpassing the linear growth mechanism. This is because the 
exponential growth mechanism initially has a slower rate of carbon 
price increase in the early years of policy implementation and then ac
celerates at a faster rate than the linear growth mechanism. With both 
mechanisms achieving the same net zero emission goal, the carbon price 
under the exponential growth mechanism is 45 % higher than the linear 
growth mechanism by 2050. However, over the entire calculation 
period, $371 billion is saved in power system cost, which accounts for 
5.22 % of the total cost. Such a carbon pricing mechanism aligns better 
with the development context of developing countries like China, pro
moting economic growth while providing a favorable environment for 
phasing out fossil fuel-based power generation. 

The capacity and generation optimization results under the expo
nential growth carbon pricing mechanism are shown in Fig. 12, and the 
results are similar to the net zero emission scenario. In 2050, the 

Fig. 8. Optimization results of capacity and power generation for NZE. (a) Absolute values of capacity; (b) Percent shares of capacity; (c) Absolute values of power 
generation; (d) Percent shares of power generation. 

Fig. 9. Typical daily load dispatch curve for BAU and NZE in 2050.  
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installed renewable energy capacity will be 5,336 GW, accounting for 
75 % of the total installed capacity, with a generation of 103,738 TWh, 
equivalent to 73 % of the total generation. The difference is that, guided 
by the carbon price, natural gas power generation, being cleaner than 
coal due to lower emissions, serves as a transitional power source until 
the cost of CCS decreases. It will see stable growth until 2030, reaching a 
peak capacity of 208 GW. However, in the case of being driven by the net 
zero emission target, its capacity begins to decrease after 2035, to 114 
GW by 2050. 

3.6. Financial incentive scenario 

Based on the optimal power generation mix, renewable energy 
sources such as onshore wind, solar and hydro gradually gain compet
itive advantages and will be fully developed due to cost reductions and 
carbon emission constraints. However, offshore wind, which started 
later and has higher cost, cannot achieve comprehensive development 
within a decade under the subsidy reduction policy, whether in the BAU, 
NZE or HCP. Given that China’s eastern region has huge offshore wind 
energy resources and is close to the load centers, we argue that it is 
necessary to put in place certain financial incentives to stimulate the 
development of offshore wind power. 

Combining the scenario design from Section 2.3 (4), the optimization 
is carried out for the two financial incentive scenarios, local subsidies 
and investment pattern optimization. This results in the additional ca
pacity for each power source as shown in Fig. 13. In the local subsidy 
scenario (Fig. 13(a)), the comprehensive subsidy policy is based on the 
average value of subsidies announced by various provincial 

governments for offshore wind power, set at RMB 1000/kW, with a 
subsidy duration of 5 years (2022–2026). It can be seen that the effect of 
local subsidy is less remarkable in incentivizing the development of 
offshore wind power except the years 2024 and 2025, and stagnation 
expected after the subsidy is discontinued. In contrast, in the investment 
pattern optimization scenario (Fig. 13(b)), offshore wind power be
comes competitive as early as 2023, and various types of renewable 
energy can achieve sustainable development. 

3.7. Sensitivity analysis 

Decarbonization in the power sector is a dynamic process influenced 
by various factors, including both the supply and demand sides. On the 
supply side, renewable energy generation, particularly sensitive to 
meteorological conditions, may be impacted by future climate change, 
and we choose to conduct sensitivity analysis on hydroelectric genera
tion, which is most affected by climate change. Due to conflicting 
findings in existing research on whether climate change will increase or 
decrease China’s hydroelectric capacity, we refer to the predictions of 
Wang [50] and Fan [51], considering two sensitivity scenarios for hy
droelectric generation: H + 10 %, assuming a linear growth of 10 % by 
2050; H-10 %, assuming a linear decrease of 10 % by 2050. Additionally, 
potential new clean energy generation technologies, such as geothermal, 
biomass, and ocean energy, may play a role in achieving net zero 
emission in the power sector. We design a sensitivity scenario for new 
generation technologies: N, incorporating geothermal, biomass, and 
ocean energy into the generation mix optimization module. On the de
mand side, the potential with flexible loads is a crucial aspect of a 

Fig. 10. Carbon emissions results under different carbon pricing mechanisms. (a) carbon emissions in the linear growth mechanism; (b) carbon emissions in the 
exponential growth mechanism. 

Fig. 11. Comparison of carbon emissions and cost results in different scenarios. (a) Carbon emissions in different scenarios; (b) Cost in different scenarios.  
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sustainable power system with large shares of variable renewable en
ergy. According to the requirements of the ‘Measures for Demand-Side 
Management of Electricity’ [52] issued by the National Development 
and Reform Commission, we design a demand response sensitivity sce
nario: D-10 %, assuming a demand response capacity equivalent to 10 % 
of the maximum electricity load. Since the four scenarios designed in the 
research framework are progressive, we conduct a sensitivity analysis on 
the investment pattern optimization scenario in FII scenario, denoted as 
scenario F. 

Sensitivity analysis results are presented in Fig. 14. Fig. 14(a) shows 
the capacity optimization results. By 2050, in the H-10 % scenario, the 
hydroelectric capacity is 68 GW less than the F scenario, while the total 
installed capacity is 128 GW more. In the H + 10 % scenario, the hy
droelectric capacity is 10 GW more than the F scenario, while the total 
installed capacity is 84 GW less. This is because the decrease in 

hydroelectric generation makes it less economically viable, leading to its 
substitution by other renewable energy sources. Simultaneously, the 
decrease in generation requires more capacity from other sources. 
Conversely, the increase in hydroelectric generation enhances its 
techno-economic characteristics, but due to capacity constraints, it only 
contributes a small additional capacity. Additionally, the increase in 
generation reduces the total installed capacity needed to meet the same 
electricity demand. Fig. 14(b) presents the results of power system cost 
calculations. Due to differences in hydroelectric generation, the H-10 % 
scenario requires more investment and operating costs, resulting in a 
total cost of approximately $6,214 billion, 1.35 % higher than the F 
scenario. The H + 10 % scenario requires less investment and costs, with 
a total cost of approximately $6,034 billion, 1.59 % lower than the F 
scenario. Moreover, whether in the H-10 % or H + 10 % scenario, the 
optimal carbon price needed to achieve net-zero emissions remains 

Fig. 12. Optimization results of capacity and power generation for HCP. (a) Absolute values of capacity; (b) Percent shares of capacity; (c) Absolute values of power 
generation; (d) Percent shares of power generation. 

Fig. 13. Optimization results of capacity addition in FII. (a) Capacity addition in the local subsidy scenario; (b) Capacity addition in the investment pattern opti
mization scenario. 
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unchanged. Under the exponential growth carbon pricing mechanism, 
with a base price of $8/t and an annual increase of 10 %, the carbon 
emissions of the power sector in 2050 are 63.0 Mt and 65.4 Mt, 
respectively. This indicates that changes in hydroelectric generation 
have little impact on the policy requirements for decarbonization in the 
power sector. 

Similarly, the sensitivity of new generation technologies is relatively 
low. By 2050, the N scenario has a total installed capacity 62 GW less 
than the F scenario. In this scenario, influenced by factors such as 
resource endowment and costs, only biomass power generation experi
ences some development, reaching an installed capacity of 121 GW by 
2050. Compared to other renewable energy sources like wind and solar, 
biomass power generation has a higher utilization factor, resulting in a 
lower total installed capacity. In terms of costs, the total cost for the N 
scenario is approximately $61,464 billion over the calculation period, 
slightly higher than the F scenario. The optimal carbon price needed to 
achieve net zero emission in this scenario also remains unchanged. 

In contrast, demand response shows higher sensitivity. By 2050, in 
the D-10 % scenario, the total installed capacity is 353 GW less than the 
F scenario. Although demand response does not lead to a decrease in the 
overall electricity demand, it helps match power supply and demand 
more efficiently, thereby reducing the required installed capacity of the 
power system. This is similar to the function of energy storage. There
fore, in the D-10 % scenario, the installed capacity of energy storage, 
especially pumped hydro storage, is lower. By 2050, the pumped hydro 
storage capacity is 206 GW, which is 120 GW less than the F scenario. In 
terms of costs, the total cost of the power system in the D-10 % scenario 
is $5674 billion, 7.47 % lower than the F scenario, significantly lower 
than other sensitivity analysis scenarios. Moreover, the optimal carbon 
price required to achieve net zero emissions is also lower in the D-10 % 
scenario, with the optimal carbon pricing mechanism starting at a base 
price of $8/t and increasing by 9.5 % annually, reaching $111/t by 
2050. 

4. Discussion 

In the context of China’s termination of national subsidies for new 
energy generation and the relatively low average carbon price in the 
national carbon market, we modeled the Chinese power system and its 
carbon emissions to explore the feasibility of achieving net zero emission 
in the Chinese power sector and the required policy measures. Simula
tion results indicate that, with stringent emission reduction constraints 
and considering resource and capacity limitations, the Chinese power 
sector can achieve net zero emission by 2050. Renewable energy 
installed capacity will increase to over 80 %, with wind and solar power 
accounting for over 70 %. This result aligns with findings in existing 
literature [53,54]. This suggests that a substantial increase in clean 

energy supply, particularly from wind and solar sources, coupled with 
the vigorous development of complementary energy storage technolo
gies, can drive the low carbon transformation of the power sector and 
achieve net zero emission. However, according to the BAU results, under 
current policies and relying solely on market competition, the trans
formation of the power sector is insufficient, and carbon emissions are 
projected to remain high by 2050. This implies that market failures exist, 
preventing the automatic realization of a low carbon transformation in 
the power system, and policy intervention is required. 

Carbon pricing is considered one of the most cost-effective public 
policy tools [55]. Our research indicates that the carbon pricing mech
anism with exponential growth incurs much lower costs compared to the 
linear growth mechanism, aligning with the development realities of 
developing countries, including China. Moreover, as China has not yet 
reached its carbon peak and has more opportunities for carbon reduction 
compared to developed economies, the cost of emission reduction is 
lower. A lower carbon price at the current transitioning stage is more 
suitable under the exponential growth carbon pricing mechanism. From 
the perspective of carbon pricing levels, achieving net zero emission in 
the Chinese power sector by 2050 would require a carbon price of 
around $127/t. According to the “IPCC Special Report on Global 
Warming of 1.5 ◦C”, achieving a 2 ◦C temperature control requires a 
global carbon price level of $15–220/t by 2030 and $45–1050/t by 
2050. To achieve a 1.5 ◦C temperature control, global carbon price 
levels need to increase further to $135–6050/t by 2030 and 
$245–14300/t by 2050 [56]. Considering the varying development 
stages of different countries, we believe the calculated carbon pricing 
results for China fall within a reasonable range. In addition, appropriate 
financial incentives are also effective measures. After the termination of 
subsidies for new energy, if the carbon price is increased, China’s 
onshore wind, photovoltaic, and other renewable energy sources will 
gradually gain a competitive advantage. However, due to higher costs, 
the development of offshore wind power may stagnate. Considering the 
financial constraints of local governments after the pandemic, China can 
refer to the European investment model of separating offshore wind 
power development and grid transmission. The grid-related projects for 
offshore wind power projects can be undertaken by the grid company. 
Under this investment model, the investment cost of offshore wind 
power will decrease, thereby promoting its development. 

Finally, China’s power sector is accelerating its transformation to
wards the net zero emission goal. Influenced by factors such as climate 
change, the decarbonization process in the future has significant un
certainty, and corresponding policies need constant adjustments. From 
the sensitivity analysis, it can be observed that the changes in electricity 
generation due to climate factors and new power generation technolo
gies have minor impacts on the power sector’s net zero emission, and it 
may not even affect carbon pricing policies. On the other hand, demand 

Fig. 14. Sensitivity analysis results of capacity and cost. (a) Absolute values of capacity mix; (b) Cost.  
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response will have a crucial impact on the power system by smoothing 
peaks and valleys, improving the operational efficiency of the power 
system, reducing investment and operating costs. Net zero emission can 
be achieved at relatively low carbon price levels. In the future, demand 
response should be a key focus along with renewable energy and energy 
storage in the low-carbon transformation of the power sector. As China’s 
demand-side management capabilities improve, carbon pricing levels 
can be adjusted accordingly. 

5. Conclusion and policy implications 

The penetration of high renewable energy is the key pathway for 
decarbonizing the electricity sector. Despite having the world’s largest 
renewable energy installed capacity, China’s power supply is still 
dominated by coal-fired power. Under gradually stricter carbon emis
sion targets, it is imperative that the penetration rate of renewable en
ergy in China continues to increase. The development speed and scale of 
renewable energy will be influenced by market economics and govern
ment policies, and supportive policies are needed to guide the healthy 
development of various types of renewable energy to achieve the net 
zero goals of the electricity sector. 

This paper develops a renewable energy penetration model to fully 
consider both the demand and supply side of the electricity sector in 
China. The simulation results show that on the demand side, China’s 
electricity demand will continue to grow along with economic devel
opment in the country, but its growth rate will gradually slow down, 
reaching 10405, 12,561 and 14,096 TWh by 2030, 2040, and 2050, 
respectively. On the supply side, in the BAU scenario, by 2050, renew
able energy share of installed capacity will reach 75 %, supplying 59 % 
of the electricity demand. At this point, carbon emissions will stand at 
3,476.06 Mt, equivalent to the 2015 level. Under the NZE scenario, with 
mandatory emission reduction constraints in place, China’s power sector 
can achieve net zero carbon emissions by 2050, leveraging its abundant 
renewable energy potential within capacity constraints. In this scenario, 
the share of renewable energy in installed capacity and electricity gen
eration will increase to 80 % and 75 % respectively. 

The findings demonstrate the feasibility of China achieving net zero 
emission by 2050 in its power sector while ensuring economic growth. 
To actively strive towards this goal, we design scenarios involving high 
carbon price policy scenario and financial incentive scenario. These 
scenarios, while ensuring net zero emission by 2050, evaluate the 
impact of different policies on renewable energy penetration and power 
system cost. Building on the findings noted above, the main policy 
recommendations are as follows: 

(1) Promote the concurrent development of renewable energy, en
ergy storage and demand response technologies. Under market mecha
nisms, the competitiveness of renewable energy costs is a prerequisite 
for its high penetration. At the same time, addressing the sup
ply–demand matching challenges resulting from the high penetration of 
renewable energy requires a reduction in the cost of complementary 
energy storage and an enhancement in demand-side management ca
pabilities. This can significantly boost the penetration rate of renewable 
energy. Implementing policies such as promoting advanced standards 
for various renewable energy and energy storage technologies, using 
administrative and economic measures to encourage user participation 
in demand response, optimizing the investment environment to reduce 
unreasonable costs in renewable energy development, and establishing a 
green financial system to lower the financing costs for renewable energy 
investments by enterprises are essential measures. These actions will 
continuously drive the development of energy storage, demand 
response, and renewable energy technologies, forming the foundation 

for accelerating decarbonization in the power sector. 
(2) Implement a carbon pricing mechanism with exponential growth 

to gradually increase carbon prices in the carbon market. According to 
the simulation results of the high carbon pricing policy scenario, while 
achieving net zero emission by 2050, the carbon pricing mechanism 
with exponential growth saves 5.35 % of cost compared to the linear 
growth carbon pricing mechanism. This indicates that a carbon pricing 
mechanism that starts with slow growth and accelerates later is better 
suited for China’s development stage. Currently, China’s carbon market 
is in its early stages of operation with relatively few trading entities and 
sufficient quota supply. The carbon market should gradually enrich the 
trading entities and continuously raise carbon prices through adjusting 
quota supply and allocation methods. To achieve net zero emission by 
2050 in the power sector, the carbon price levels should be approxi
mately $18/t in 2030, about $48/t in 2040, and approximately $127/t 
in 2050. 

(3) Provide appropriate financial subsidies and preferential policies 
for offshore wind power. The onshore renewable energy resources in 
eastern China is underdeveloped. If we want to achieve localized clean 
energy supply, it is necessary to promote offshore wind power devel
opment. However, as offshore wind power is a late starter in China, it 
has no cost advantage. Terminating financial subsidies due to financial 
pressure may hinder its expansion. Considering the financial burden on 
the government, an advisable approach is to consider the investment 
model used in European offshore wind power, where the costs of grid 
connection infrastructure are borne by the grid companies. This 
approach can stimulate technological advancement and cost reduction 
in the offshore wind power industry, leading to a smooth transition to
wards grid parity, and ultimately promoting the comprehensive and 
healthy development of renewable energy sources. 

Although there are significant findings in this study, there exist some 
limitations in it. Given that the model primarily optimizes capacity 
expansion and electricity supply with a focus on cost, it considers reli
ability in the power system to a lesser extent, particularly without ac
counting for the impact of extreme weather. As climate change leads to 
more frequent extreme weather events, we plan to incorporate addi
tional reliability constraints into the model in the future. 
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Appendix A 

A.1 Lists the main basic data values of the electricity demand forecasting module  

Table A1 
Major macroeconomic data.  

year GDP(Billion yuan) Population(Million person) urbanization rate 
（%） 

2015  688858.2  1383.26  57.33 
2016  746395.1  1392.32  58.84 
2017  832035.9  1400.11  60.24 
2018  919281.1  1405.41  61.50 
2019  986515.2  1410.08  62.71 
2020  1013567.0  1412.12  63.89 
2021  1149237.0  1412.60  64.72   

Table A2 
Proportion of value-added by various sectors.   

Primary industry 
(%) 

secondary industry 
(%) 

Among them: mining(%) manufacturing 
（%） 

construction 
（%） 

other industries 
（%） 

tertiary industry 
(%) 

2015 8.4  40.8  6.8  71.9  16.6  4.7  50.8 
2016 8.1  39.6  6.2  72.5  16.8  4.5  52.4 
2017 7.5  39.9  6.4  70.5  17.5  5.6  52.7 
2018 7  39.7  6.2  70.2  18.0  5.7  53.3 
2019 7.1  38.6  6.2  69.4  18.6  5.8  54.3 
2020 7.7  37.8  5.7  69.5  18.9  5.9  54.5 
2021 7.2  39.3  5.5  70.1  17.7  6.6  53.5   

Table A3 
Main data of the transportation sector.   

Number of electric vehicles 
(thousands of vehicles) 

Driving mileage (billion kilometers). Converted turnover (in billions of ton-kilometers). Railway electrification rate（%） 

2015 580   3350.37 61.2 
2016 910   3380.11 64.5 
2017 1530   3748.87 68.5 
2018 2600   3986.50 60.2 
2019 3090  41.6  4153.91 71.9 
2020 4920  64.1  3565.59 74.9 
2021 7840  100.94  3950.91 77  

Appendix B 

Lists the main basic data values of the power generation mix optimization module. 
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Fig. B1. Availability of solar PV.   

Table B1 
Historical capacity of various types of power sources (Thousand kW).   

2015 2016 2017 2018 2019 2020 2021 

Pumped storage 23,050 26,090 28,690 29,990 30,290 31,490 36,390 
New Energy Storage 0 600 210 1210 2110 4110 7050 
Onshore Wind 129,716 145,844 161,210 179,825 202,310 272,650 302,320 
Offshore Wind 1034 1626 2790 4445 6840 9000 26,390 
Solar PV 42,180 76,310 130,420 174,330 204,290 253,560 306,540 
Hydro 296,490 305,980 315,420 322,600 327,750 338,790 354,550 
Nuclear 27,170 33,640 35,820 44,660 48,740 49,890 53,260 
Coal 900,090 946,240 985,620 1,008,350 1,040,630 1,082,630 1,109,620 
Natural Gas 66,030 70,110 75,800 83,750 90,240 99,730 108,940   

Table B2 
Historical electricity generation of various types of power sources（billion kwh）.   

2015 2016 2017 2018 2019 2020 2021 

Onshore Wind  185.6 240.9  304.6 365.8 405.3  466.5 655.8 
Solar PV  39.5 66.5  117.8 176.9 224  261.1 327 
Hydro  1096.9 1144  1161.9 1199.2 1270.2  1321.8 1300.9 
Nuclear  171.4 213.2  248.1 295 348.7  366.2 407.5 
Coal  4079.6 4169.9  4417.3 4742.3 4846.2  4958.3 5417.6 
Natural Gas  166.9 188.3  203.2 215.5 232.5  252.5 287.1   

Table B3 
Investment cost of various types of power sources (Only some years are listed) ($/kW).   

2022 2025 2030 2035 2040 2045 2050 

Pumped storage 1499 1499 1508 1508 1508 1508 1508 
New Energy Storage 1258 998 786 738 688 639 590 
Onshore Wind 1111 985 776 737 698 660 621 
Offshore Wind 1691 1526 1382 1293 1228 1177 1135 
Solar PV 635 556 426 407 388 369 350 
Hydro 1596 1596 1526 1456 1387 1387 1387 
Nuclear 2205 2112 2090 2019 1949 1878 1808 
Coal 1070 1053 1002 951 918 885 853 
Natural Gas 926 909 890 870 851 833 814 
Coal CCS 1729 1687 1563 1421 1275 1243 1211 
NG CCS 1439 1382 1304 1222 1149 1109 1069 
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Table B4 
Fixed OM Cost of various types of power sources (Only some years are listed) ($/kW).   

2022 2025 2030 2035 2040 2045 2050 

Pumped storage 17.8 17.8 17.8 17.8 17.8 17.8 17.8 
New Energy Storage 48.37 38.40 30.25 28.37 26.48 24.59 22.70 
Onshore Wind 42.19 40.98 38.95 37.49 36.03 34.57 33.11 
Offshore Wind 98.79 91.03 83.01 77.63 73.58 70.33 67.62 
Solar PV 19.95 18.17 15.22 14.72 14.23 13.74 13.25 
Hydro 54 54 54 54 54 54 54 
Nuclear 146 146 146 146 146 146 146 
Coal 22 22 22 22 22 22 22 
Natural Gas 21.43 21.43 21.43 21.43 21.43 21.43 21.43 
Coal CCS 42.5 42.5 42.5 42.5 42.5 42.5 42.5 
NG CCS 35.4 35.4 35.4 35.4 35.4 35.4 35.4   

Table B5 
Other major parameters of power sources.   

Variable OM Cost ($/MWh) Maximum Capacity Addition (MW) Life-time Availability (%) energy efficiency 
(%)  dry wet 

Pumped storage 0.51 10,000 40 60 60 85 
New Energy Storage 0 30,000 15 80 80 85 
Onshore Wind 0 70,000 30 20 30 100 
Offshore Wind 0 20,000 30 30 40 100 
Solar PV 0 60,000 30 Fig. B1 Fig. B1 100 
Hydro 0 20,000 50 28 60 100 
Nuclear 2.31 10,000 40 90 90 32.62 
Coal 5.03 100,000 30 85 85 38.77 
Natural Gas 2.77 10,000 30 80 80 52.90 
Coal CCS 50 50,000 30 85 85 38.77 
NG CCS 15 10,000 30 80 80 52.90  
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