Data Maps:
A Thicket of Thorny Choices

CHAPTER 11

A single set of numerical data can yield mark-
edly dissimilar maps. By manipulating breaks between categories
of data to be shaded on a choropleth map, for instance, a mapmaker
can often create two distinctly different spatial patterns. A single
map is thusjust one of many maps that might be prepared from the
same information, and the map author who fails to look carefully
at the data and explore cartographic alternatives easily overlooks
interesting spatial trends or regional groupings.

Wary map users must watch out for statistical maps carefully
contrived to prove the points of self-promoting scientists, manipu-
lating politicians, misleading advertisers, and other propagandists.
Meanwhile, thisis an area in which the widespread use of mapping
software has made unintentional cartographic self-deception inev-
itable. How many software users know that using area-shading
symbols with magnitude data produces misleading maps, or that
size differences between areal units such as counties and census
tracts can radically distort map comparisons?

This chapter uses several simple hypothetical examples fea-
turing a fictional electronic device we’ll call a “gizmo” to examine
the effects of areal aggregation and data classification on mapped
patterns. Anyone interested in public-policy analysis, marketing,
social science, or disease control needs to know how maps based on
numbers can yield useful information as well as flagrant distortions.

Aggregation, Homogeneity, and Areal Units

Most quantitative maps display data collected for areas such as
counties, states, and countries. When displayed on a map, present-
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Figure 11.1. Town-unit number tables showing number of gizmos [top left), number
of households (top right), and average number of gizmos per household (bottom) for
twenty-eight hypothetical towns.

Number of Number of Gizmos per
Gizmos Households Households
2,300 5,700 4,150 3,100 5,500 2,600 0.74 1.04 1.60

Figure 11.2. County-unit number tables of number of gizmos (left), number of house-
holds (middle), and average number of gizmos per household (right) for a three-county
aggregation of the twenty-eight hypothetical towns in figure 11.1.

ed on a statistical plot, or analyzed using correlation coefficients
or other measures, geographic data produce results that reflect the
type of areal unit. Because different areal aggregations of the data
might yield substantially different patterns or relationships, the
analyst should qualify any description or interpretation by stat-
ing the type of geographic unit used. Noting that values generally
increase from north to south “at the county-unit level” warns the
reader (and the mapmaker as well!) that a different trend might
arise with state-level data, for instance.



Number of Number of Gizmos per
Gizmos Households Household
1,450 2,900 0.5
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4,800 2,400 2.0
Number of Number of Gizmos per
Gizmos Households Household
1,100 2,200 0.5
—I 3,550 —I 3,200 —I 1Lt
[2100] [4100]
[ 3400 [ 1,700 [ 20

Figure 11.3. County-unit number tables based on other aggregations of the twenty-
eight towns into counties.

Areal aggregation can have a striking effect on the mapped pat-
terns of rates and ratios. A ratio such as the average number of giz-
mos per household might, for example, produce radically different
maps when the data are aggregated separately by counties and by
the towns that make up these counties. The three town-level maps
in figure 11.1 are spatially ordered number tables, without graphic
symbols, so that we can see how rate calculations depend on what
boundaries are used and how they are drawn. The upper left-hand
map shows the number of gizmos in each of twenty-eight towns,
the upper right-hand map represents the number of households,
and the lower map portrays the gizmo-ownership rate. Note the
straightforward top-to-bottom pattern of the rates: lowin the upper
tier of towns, average in the two middle tiers, and high in the lower
tier. Note also that three towns in the upper left, lower right, and
just below the center of the region have relatively high numbers
of households. These variations in household density underlie the
markedly different left-to-right trend in gizmo-ownership rates in
figure 11.2, based on the same data aggregated by county.

Spatial pattern at the town-unit level of aggregation depends
on how somewhat arbitrary political boundaries group towns into
counties. Figure 11.3 uses two additional aggregations of these
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Figure 11.4. Patterns of the number of gizmos, the number of households, and the
gizmo-ownership rate radically different from those in figure 11.1 could yield county-
unit patterns identical to those in figure 11.2.

twenty-eight towns to demonstrate the possible effect of historical
accident. The upper row of maps shows an alternative aggregation
of towns into three horizontal counties that reflect the town-level
top-to-bottom trend. In contrast, the lower series of maps shows
an equally plausible aggregation into four counties, three based on
the concentrations of households and one comprising the balance
of the region. The gizmo-ownership map for this lower set isolates
what might be more urban counties from a single much larger,
more rural county with an average of slightly more than one gizmo
per household. Graytone area symbols would yield very different
choropleth maps for the three sets of rates shown in the right-hand
maps of figures 11.2 and 11.3.

Another example illustrates how areal aggregation can affect
geographic pattern. Whereas figure 11.3 demonstrates that dif-
ferent aggregations of towns into counties can yield markedly
different county-level patterns, figure 11.4 illustrates how a sin-
gle aggregation can produce the same county-level pattern from
markedly different town-level patterns. Note that the town-level



mapsin figure 11.4 reflect a pattern of gizmo-ownership rates very
different from thatin figure 11.1. Note in particular the progression
of rates from a tier of low-ownership towns across the bottom of
the region to a peak of much higher rates at the upper right. Yet
when aggregated according to the county boundaries in figure
11.2, these data will yield similar county-unit rates. Comparing
this trio of spatial number tables with those in figure 11.1 demon-
strates the importance of stating clearly the data units used and
of not assuming that a trend apparent at one level of aggregation
exists at other levels as well.

The counties in these examples obviously are not homoge-
neous. But can we assume homogeneity even within the towns?
What spatial variations in the distribution and density of these
11,200 households lie hidden in the network of town boundaries?
Figure 11.5 presents one of many plausible point patterns that could
produce the aggregated town-level counts and rates in figure 11.1.
Three types of point symbols represent groups of ten, one hundred,
and five hundred households. Each symbol represents a group of
households owning an average of zero, one, or two gizmos. The
small, ten-household symbols represent rural residences, which
might lack gizmos because of a lack of connectivity, less spare
time, or a low opinion of digital gadgetry. Because of rough ter-
rain, swamps, park- or forestland, and undeveloped federal land,
large parts of the region are uninhabited. Of the six large villag-
es, with four hundred or more households, two have two-gizmo
households on the average, two have one-gizmo households, and
two have gizmo-free households. Although figure 11.5 contains
elements of both the top-to-bottom town-level trend in figure 11.1
and the left-to-right county-unit trend in figure 11.2, its pattern of
gizmo ownership is more similar to the lower right of figure 11.3,
where county boundaries segregate three large population clus-
ters from the balance of the region. Yet even here the differences
are striking, again demonstrating how the configuration of areal
units can hide interesting spatial detail and present a biased view
of a variable’s geography.
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Figure 11.5. Detailed map of gizmo ownership for villages and rural households
illustrates one possible spatial structure that could yield the town-unit and county-unit
maps in figures 11.1 and 11.2.

Aggregation’s effects become even more serious if the care-
less analyst or naive reader leaps from a pattern based on areal
units to conclusions based on individual households. Consider,
for instance, the large village toward the lower right-hand corner
of figure 11.5. The average gizmo-ownership rate here of 2.0 need
not mean that each of the village’s 1,700 houses has two gizmos.
Some households might have none while others might have three
or four or five. One or two residents might even be compulsive
collectors—hoarders masquerading as hobbyists—so that more
than half the homes have one or none.

If households collecting old gizmos seems far-fetched, consid-
er average household income, an index used frequently by social
scientists and marketing analysts. Because of one or two innova-
tive, unscrupulously manipulative, or otherwise successful resi-
dents, a small village might have an enormous mean household
income. More of a statistical quirk than a realistic reflection of
overall local prosperity, this high average income might mask the
employment of most villagers as household servants, gardeners, or
security guards. Because nondisclosure rules prohibit a more pre-
cise publication of individual incomes, aggregated census data are
the most refined information available. They provide an average
for the place but say little about individual residents.



Are areally aggregated data bad? Surely not. In many cases, par-
ticularly in public-policy analysis, towns and counties are the truly
relevant units for which state and federal governments allocate
funds and measure performance. And even more highly aggre-
gated data can be useful, for instance, when governors and sena-
tors want to compare their states with the other forty-nine. Local
officials and social scientists concerned with differences between
neighborhoods readily acknowledge the value of geographic aggre-
gation. Moreover, nondisclosure regulations, which are needed
to ensure cooperation with censuses and surveys, require aggre-
gation, and areally aggregated data are better than no data at all.
Thus persons who depend on local-area data encourage the Census
Bureau to modify boundaries to preserve the homogeneity of cen-
sus tracts and other reporting areas. And when tract data are not
adequate, they sometimes pay for new aggregations of the data to
more meaningful areal units.

What else can the conscientious analyst do? Very little aside
from the obvious: know the area and the data, experiment with
data for a variety of levels of aggregation, and carefully qualify
all conclusions.

And what should the skeptical map user do? Look for and com-
pare maps with different levels of detail, and be wary of carto-
graphic manipulators who choose the level of aggregation that
best proves their point.

Aggregation, Classification, and Outliers

Choropleth mapping further aggregates the data by grouping all
areas with arange of data valuesinto a single category represented
by a single symbol. This type of aggregation addresses the diffi-
culty of displaying more than six or seven visually distinct col-
ors or graytones in a consistent light-to-dark sequence. Often the
mapmaker prefers only four or five categories, especially when
the area symbols available do not afford an unambiguous graded
series. (For aesthetic reasons or to avoid confusion with interior
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Figure 11.6. Different sets of categories yield different three-category choropleth maps
for the data in figure 11.4.

lakes or areas without data, opaque white and solid black are not
good graytone symbols for choropleth maps.)

But classification introduces the risk of a mapped pattern that
distorts spatial trends. Arbitrary selection of breaks between cat-
egories might mask a clear, coherent trend with a needlessly frag-
mented map or oversimplify a meaningfully intricate pattern with
an excessively smoothed view. Figure 11.6 illustrates the influ-
ence of class breaks on the appearance of choropleth maps of the
town-level gizmo-ownership rates in figure 11.4. Note that the
map on the left presents a clear, straightforward, readily remem-
bered upward trend toward a peak at the upper right of the region,
whereas the map at the right offers a more fractured view of the
same data.

Classification raises many questions. Which map, if either, is
right? Or if “right” sounds too dogmatic, which provides a better
representation of the data? Don’t both maps hide much variation
in the broad third category, represented by the darkest symbol?
Shouldn’t the seven towns with rates of 0.2 occupy a category by
themselves? Is a difference of, say, 0.1 at the lower end of the over-
all range of data values more important than a similar difference
at the upper end? Can a three-class map provide even a remotely
adequate solution?

These questions are vital not only to map users but also to map
authors, particularly those using graphics software but untrained



Equal-Interval Classes Quartile (Quantile) Classes

Gizmos per D 02t02.3 Gizmos per El 02
Household D s Household
24t045 []o07t13
B 46t06.7 B 14t018
Il 68to89 Il 19089

Figure 11.7. Two common classing schemes used as “defaults” by choropleth mapping
software yield radically different four-category patterns for the data in figure 11.4.

in cartography. Software applications usually provide a few options
for “automatic” classification, and naive mapmakers often settle for
one of the easier options. Sometimes the software even provides
a map instantly, without offering a choice of classification strate-
gies. Called a default option, this automatic choice of class breaks
is a marketing ploy that gives the hesitant prospective purchaser
an immediate success.

But does the default give you a good map? Figure 11.7 shows
four-category mapped patterns produced by two common default
classing options for the same town-level gizmo-ownership data
used in figure 11.6. The equal-intervals scheme, on the left, divides
the range (8.7) between the lowest and highest data values (from
0.2to 8.9) into four equal parts (each spanning 2.175 units). Note,
though, that this classification assigns most of the region to a sin-
gle category and that the third category (from 4.6 to 6.7) is empty.
Of possible use when data values are uniformly distributed across
therange, the only consistent asset of equal-interval classification
is ease of calculation.

By contrast, the quartile scheme, on the right, ranks the data val-
ues and then divides them so that all categories have the same num-
ber of areal units. Of course, only an approximately equal balance is
possible when the number of areas is not a multiple of four or when
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Figure 11.8. A continuous-tone, non-classed choropleth map for the data in figure 11.4.
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a tie thwarts an equal allocation (as occurs here at the upper left,
where the highest category receives both of the towns with rates of
1.9). Although the map pattern is more visually balanced, the upper
category is broad and highly heterogeneous, and the break between
the second and third categories falls between two very close values
(1.3and1.4). Yet the map based on these four quartile categories does
have meaning for the user interested in the locations of towns in the
highest and lowest quarters of the data values. Called quintiles for
five categories and quantiles more generally, this rank-and-balance
approach can accommodate any number of classes.

Some mapping applications offer the option of a “no-class” or
“class-less” choropleth map, on which each unique data value (per-
haps up to fifty of them) receives a unique graytone. In principle
this might seem a good way to sidestep the need to set class breaks.
But as figure 11.8 illustrates, the graytones might not form a well-
ordered series, and the map key is either abbreviated or cumber-
some. Moreover, assigning each unique value its own category can



0.2 2.0 4.0 6.0
Gizmos per Household

Figure 11.9. Number line for the town-level gizmo-ownership rates in figure 11.4.

destroy a clear, easily remembered picture of a strong, meaningful
spatial trend. This ideal solution might not be so ideal after all.

Eschewing defaults and panaceas, the astute map author
begins by asking two basic questions: How are the data distribut-
ed throughout their range? And what, if any, class breaks might
have particular meaning to the map user? The answer to this sec-
ond question depends on the data and on whether the map author
deems useful a comparison with the national or regional average.
On state-level maps, for instance, a break at the United States aver-
age would allow governors and senators to compare their constitu-
ents’ or their own performance with that of the rest of the nation.
Of course, the map key would have to identify this break to make
it truly meaningful.

After addressing the question of meaningful breaks, the con-
scientious map author might then plot a number line similar to
that in figure 11.9. A horizontal scale with tick marks and labels
represents the range of the data. Each dot represents a data value,
and identical values plot at the same position along the scale, one
above the other. The resulting graph readily reveals natural breaks,
if any occur, and distinct clusters of homogeneous data values,
which the classification ought not subdivide. Number lines allow
the map author to visualize the distribution of data values and
to choose an appropriate number of categories and appropriate
positions for class breaks. Computer algorithms can also search
the data distribution for an optimal set of breaks, but in many cas-
es the computer-determined optimum is not significantly better
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Figure 11.10. Choropleth map based on the number line in figure 11.9 and the charac-
ter of the data.

than a visually identified suboptimal grouping. Rounded breaks
and a more balanced allocation of places among categories can be
important secondary factors in choropleth mapping.

Extremely high or extremely low values isolated from the rest
of the distribution can confound both human cartographers and
sophisticated mapping software. Should these outliers be grouped
with markedly more homogeneous clusters higher or lower on the
number line? Should each be accorded its own category? Can two
or three widely separated data values at either end of the distri-
bution be grouped into a single, highly heterogeneous category?
Orshould each outlier be treated as its own category, with its own
symbol, at the risk of reducing graphic differentiation between
area symbols? Or might the map author treat outliers as outcasts—
errors or deviants that “don’t belong”—and either omit them or
give them a special symbol?

No simple, standard solution addresses all outliers. The map
author should know the data, know whether these deviant val-
ues are real or improbable, and know whether a large difference
between outliers really matters. Also important is the relation of
outliers to the theme of the map and the interests of map users. For
the gizmo-ownership data in figure 11.9, an average of 8.9 gizmos
per household surely is not only exceptional but probably signifi-
cantly higher than its neighboring values at 4.2. If not an error,
it deserves special treatment in a category of its own. The next
four lower values, 4.2 (twice), 3.5, and 2.6, might then constitute



asingle category; all are above the more plausible rate of 2.0, and
yet 4.2 gizmos per household is not improbable, especially in an
affluent area.

Other breaks seem warranted between 0.9 and 1.3, a gap that
includes the inherently meaningful rate of one gizmo per house-
hold, and between 0.2 and 0.7, to separate the seven techno-
phobic towns at the lower end of the distribution. The resulting
five-category map in figure 11.10 provides not only an honest,
meaningful representation of the data values and their statistical
distribution, but a straightforward portrayal of the spatial trend
as well. An arbitrary classification, such as a computer program’s
default categories, is unlikely to do as well, even with six or more
categories.

Classification, Correlation, and Visual Perception

Choropleth maps readily distort geographic relationships between
two distributions. Hastily selected or deliberately manipulated
categories can diminish the visual similarity of two essentially
identical trends or impose an apparent similarity between two
very different patterns.

Consider as a case in point figure 11.11, a spatial-data table and
number line for the mean number of children per household,
which has a strong town-level relationship to gizmo ownership.
Although the range of data values is not as broad for this index of
family size, the highest values are at the upper right and the lowest
values occur across the bottom of the region. Towns toward the
right and toward the top of the region generally have more children
in the home than do towns toward the bottom or left edge of the
map. That the pair of maps in figure 11.12 shows identical spatial
patterns for children and gizmos is thus not surprising.

Statistical analysts commonly depict correlation with a two-
dimensional scatterplot, with data values for one variable measured
along the vertical axis and those for the other scaled along the hori-
zontal axis. A dot represents each place, and the density and orien-
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Figure 11.11. Spatial-data table and number line for average number of children per
household.
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Figure 11.12. Choropleth maps with identical patterns for gizmo-ownership rate and

average number of children per household.

tation of the point cloud indicates the strength and direction of the
correlation. Figure 11.13 is a pair of scatterplots, both showing the
strong positive association between the household rates for chil-
dren and gizmos. The perpendicular lines extending from the scales
of the left-hand scatterplot into the scatter of points represent the
class breaks in figure 11.12. These two sets of four lines each divide
the scatterplot into an irregular five-by-five grid. Because all dots
on the left-hand scatterplot lie within one of the five diagonal cells,
the two five-category maps in figure 11.12 have identical patterns,
enhancing the impression of a strong correlation.
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Figure 11.13. Scatterplots for the town-level gizmo-ownership rate and average num-
ber of children per household. Additional lines on the left-hand scatterplot represent
class breaks for the pair of maps in figure 11.12. Additional lines on the right-hand
scatterplot show breaks used in figure 11.14.
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Figure 11.14. Distinctly different choropleth maps suggest minimal correlation between
gizmo ownership and family size.

Figure 11.13’s right-hand scatterplot adds some cartographic
skulduggery. As before, the perpendicular lines from the scales into
the point cloud represent class breaks and form a five-by-five grid.
But note that this configuration of breaks places all but four dots
in an off-diagonal cell so that few towns will belong to the same
category on both maps. Figure 11.14 demonstrates the resulting dis-
similarity in map pattern and suggests a mediocre correlation at
best. Similar tactics might make a weak relationship appear strong,
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Figure 11.15. Similarity between large areas can distort visual estimates of correlation

by masking significant dissimilarity between small areas. Numerical data and mapping
categories are identical to those for the more obviously dissimilar pair of maps in figure
11.14.

especially if the maps are identical for the highest category, with the
darkest symbol. Indeed, the spatial correspondence of the darkest,
most eye-catching symbols strongly influences judgments of map
similarity by naive map users. Some will even regard as similar two
maps with roughly equal amounts of the darkest symbol—even if
the high areas are in different parts of the region! Different area
symbols for the two maps and different numbers of categories are
other ways of tricking the map user or deluding oneself.

Another visual distortion might lie in the base map the data are
plotted on. Not all sets of areal units are as uniform and visually
equivalent as the square towns in the preceding examples. Figure
11.15 demonstrates this point with a deceptively similar-looking
pair of maps based on the numerical data and class breaks of the
visually dissimilar maps in figure 11.14. These twenty-eight towns
vary markedly in size, and similarity is high because the largest
towns belong to the same category. Towns not in the same category
on both maps are smaller and less visually influential.
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Figure 11.16. Scatterplots and trend lines for various types of correlation.

Although this example involving gizmo ownership is contrived,
itis not atypical. Wards, census tracts, congressional districts, and
other areal units designed to have similar populations often vary
widely in area because of variations in population density. Dispar-
ities are even worse on county-unit maps, where populous metro-
politan counties often are much smaller than rural counties with
fewinhabitants. The careful map user never judges numerical cor-
relation by the similarity in map pattern alone and is especially
cautious when some data areas are much bigger than others.

To avoid estimates of correlation biased by the size of areal units,
the astute analyst will inspect the more egalitarian scatterplot, on
which identical dots represent each area. As figure 11.16 illustrates,
the density and orientation of the point cloud reflect the strength
and direction of the correlation. If a straight line provides a good
generalization of the point cloud, the correlation is called linear
and the scatter of points around the line indicates the strength of
the linear correlation. Positive relationships slope upward to the
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right, negative relationships slope downward to the right, and
a point cloud without a discernible relationship has no apparent
slope. Weak correlations have a wide, barely coherent scatter about
the trend line, whereas for strong linear correlations most points
are near or on the line. Not all correlations are linear, though; a
strong curvilinear correlation has a marked curved trend, which a
curved line fits better than a straight line.

Statisticians use a single number, the correlation coefficient, to
measure the strength and direction of a linear correlation. Rep-
resented by the symbol r, the correlation coefficient shows the
direction of the relationship by its sign and the strength of the
relationship by its absolute value. The coefficient ranges from
+1.00 to —1.00; r would be 0.9 or higher for a strong positive cor-
relation, —0.9 or lower for a strong negative correlation, and close
to zero for an indeterminate or very weak correlation. (As a rule
of thumb, squaring r yields the proportion of one variable’s varia-
tion accounted for by the other variable. Thus, if r is —0.6, the cor-
relation is negative and one variable might be said to “explain” 36
percent of the other variable. A correlation coefficient measures
only association, not causation, which depends on logic and sup-
porting evidence.)

Maps, scatterplots, and correlation coefficients are complemen-
tary, and the analyst interested in correlation relies on all three.
The correlation coefficient, which provides a concise compari-
son for a pair of variables, measures only linear correlation. Yet a
scatterplot quickly reveals a strong curvilinear relationship, with
a mediocre value of . Scatterplots also show outliers, which can
greatly bias the calculation of r. But reliance on visual estimation
makes scatterplots poor for comparing strengths of relationships.
Moreover, scatterplots and correlation coefficients tell us nothing
about thelocations of places, whereas maps, which present spatial
trends, can offer unreliable estimates of correlation.

Maps also show a different kind of correlation, a geographic cor-
relation distinct from the statistical correlation of the scatterplot
and the correlation coefficient. Statistical correlation is aspatial
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Figure 11.17. Two pairs of variables with identical scatterplots, correlation coefficients
(r=.93), and class breaks, yet distinctly different map patterns.

and reveals nothing about spatial trends. Figure 11.17 demonstrates
this difference with two map pairs distinct in spatial pattern yet
identical in scatterplot and correlation coefficient. Variables A and
B, which share a comparatively chaotic, fragmented pattern, clear-
ly differ in geographic correlation from variables X and Y, which
have a distinct common trend with higher values toward the top of
the region and lower values toward the bottom. Although notiden-
tical, the maps for X and Y suggest the influence of a third, under-
lying geographic factor, such as latitude, ethnicity, soil fertility,
or proximity to a major source of pollution. Despite the problems
posed by areal aggregation, the analyst of geographic data who
explores correlation without also checking for spatial pattern is
either ignorant, careless, or callous. And the nonskeptical reader
is easily misled.

Whether expressed numerically or with maps, correlations
based on spatially aggregated data are vulnerable to the ecologi-
cal fallacy, whereby a relationship demonstrated for one level of
areal aggregation—say, with county units—is presumed to hold
for other aggregations (such as states) as well as for individuals.
(Regardless of their size, areal units are considered ecological units,
rather than individuals.) For example, a finding that areas above
average in number of years of education tend to be above average
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in income does not mean that people with master’s degrees are
necessarily well paid—graduate students pursuing a doctorate
are a case in point.

Places, Time, and Small Numbers

Areal data can yield particularly questionable patterns when
choropleth maps show rates based on infrequent events, such as
deaths from a rare type of cancer. Yet disease maps based on small
numbers are a common tool of the epidemiologist, who uses map-
ping to explore the possible effects on human health of radon-rich
soils, incinerators, chemical-waste dumps, and drinking water
supplied through lead pipes. But one question arises whenever the
map shows a trend or cluster: Is the pattern real?

The problem is one of small numbers. Pandemics are rare, and
seldom is the association between disease and an environmental
cause so overwhelming that the link is easily identified and unchal-
lenged. Clusters of deaths or diagnosed cases usually are few and
unspectacularly small, perhaps no more than three deathsin a town
or two in the same neighborhood. Epidemiologists map these cases
both as points, to get a sense of patterning, and by areal units, to
adjust for spatial differences in the number of people at risk. After
all, an area with half the region’s cases is not remarkable if it has half
the region’s population. But what is the significance of a small area
with two or three cases and a rate several times above the national or
regional rate? Could this pattern have arisen by chance? Would one
or two fewer cases make the areano longer a “hot spot”? If one more
case were to occur elsewhere, would this other area also have a high
rate? To what extent does the pattern of high rates reflect arbitrary
boundaries, drawn in the last century to promote efficient govern-
ment or decades ago to expedite delivery of mail? Might another
partitioning of the region yield a markedly different pattern? Might
another level of aggregation—larger units or smaller units—alter
the pattern? Is the mapping method inflating the significance of
some clusters? And is it possibly hiding others?
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Figure 11.18. A reconstruction of John Snow’s famous dot map of cholera (above) and
three choropleth maps (below) produced by different areal aggregations of this part of
London.

Consider, for example, the maps in figure 11.18. At the topisa
reconstruction of John Snow’s famous map showing cholera deaths
clustered around the Broad Street pump. A physician working
in London during the cholera epidemic of 1854, Snow suspected
drinking water as the source of infection. At that time homes did
not have running water, and people carried buckets from a nearby
pump. According tolegend, Snow’s map confirmed the waterborne
transmission of cholera, and when authorities removed the pump’s
handle, new cases in this part of the city plummeted. Truth be told,
the epidemic had run its course, and Snow made his map months
later when he revised his book on cholera.

But what might have happened had Snow not worked with point
data? The three maps at the bottom of figure 11.18 show how var-
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ious schemes of areal aggregation might have diluted the Broad
Street cluster. If addresses are available, as on most death certifi-
cates, aggregation to census tracts or other areal units larger than
the city block increases the risk of missing intense, highly local
clusters.

Aggregation involves not only areal units but also time, disease
classification, and demography. One solution to the question of
significance is to get more data by collecting information over a
longer time span. Adding together several years of data, or even
several decades, dampens the effect of chance occurrences but risks
involving a wider range of causal agents. Aggregation over time
might, for instance, mask important temporal trends, dilute the
impact of new or abated environmental contaminants, or incor-
porate difficult-to-measure effects of population mobility. Like-
wise, combining several disease categories or the mortalities of
diverse demographic groups promotes stability and significance
byincreasing the number of cases and broadening the set of causes.

Clearly one map is not sufficient, although one good map can
signal the need for a more detailed investigation. It is then up to
a variety of scientific researchers to explore further the effects
of geography and environment by examining employment and
residential histories, characteristics of residence and neighbor-
hood, and hereditary factors; by carefully studying maps at var-
ious levels of spatial, temporal, and demographic aggregation;
through computer simulation to test the stability of known clus-
ters; through automated pattern recognition to identify new clus-
ters; and through related clinical and laboratory studies. Although
maps can indeed lie, they can also hold vital clues for the medical
detective.

Indexes, Rates, and Rates of Change

Another danger of one-map solutions is a set of measurements
that presents an unduly positive or negative view. Often the map
author has a single theme in mind and has several variables to



choose from. Usually some variables are markedly more optimis-
tic in tone or pattern than others, and the name of the index can
cast a favorable or unfavorable impression in the map title. “Labor
Force Participation,” for instance, sounds optimistic, whereas “Job
Losses” clearly is a pessimist’s term. An appropriately brazen title
offers a good way to overstate economic health or industrial illness.

Ifthe pictureis bleaker or brighter than suits your politics, try a
rate of change rather than a mere rate. After all, minor downturns
often interrupt a run of good years, and depressions do not last
forever. If unemployment is high now but a bit lower than a year,
six months, or a month ago, the optimist in power would want a
map showing a significant number of areas with declining unem-
ployment. Conversely, the pessimist who is out of power will want
a map depicting conditions at least as bad as before the current
scoundrels took over. A time interval that begins when propor-
tionately fewer people were out of work will make the opposition
party’s point, especially if unemployment has become worse in
large, visually prominent, mostly rural regions.

A useful index for the optimist is one with relatively low values,
such as the unemployment rate, if conditions have improved, or an
index with comparatively high values, such as employment level,
if conditions are worse. Thus a drop of one percentage point from
abase of 4 percent unemployment yields an impressive 25 percent
improvement! Yet a substantial increase in the unemployment rate
from 4 to 6 percent can be viewed more optimistically as a drop in
labor force participation from 96 to 94 percent—a mere 2 percent
drop in employment.

Point symbols and counts, rather than rates, can be useful too.
Ifthe economy has been improving in all regions, the current gov-
ernment might want a map with graduated circles or bars showing
actual counts beneath the title “Employment Gains.” If the country
isin a widespread recession, the opposition would use similar point
symbols with the title “New Job Losses.”

The cartographic propagandist is also sensitive to spatial pat-
terns. Favorable symbols should be large and prominent, and unfa-
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Area Labor Force _Unemployment (000s) Unemployment Rate  Percentage
(000s) & t, change G t, change Change
1 3,000 120 180 +60 4.0% 6.0% +2.0% +50.0%
2 16,000 640 800  +160 4.0% 5.0% +1.0% +25.0%
3 2,500 125 113 -12 50% 4.5% -0.5% -9.6%
4 800 56 48 -8 7.0% 6.0% -1.0% -14.3%
5 500 40 85) -5 8.0% 7.0% -1.0% -12.5%
Areas - —
60 160
EEN 5
A — l—L
2
Percentage Change in the Increases in
Unemployment Rate I’ersqns Increase
= Decrease by 9% to 15% Seeking
[ increase Work Decrease
(thousands)

Figure 11.19. Unemployment data (top] for a hypothetical region (bottom center) yield
different maps, supporting an optimistic view (bottom left) and a pessimistic view
[bottom right) of recent temporal trends.

vorable ones small and indistinct. Thus the optimist might present
the unemployment data in figure 11.19 with the map at the lower
left, to focus attention on improved conditions in larger areas,
whereas the pessimist would prefer the map at the lower right,
to emphasize the much greater number of unemployed persons
in more urban areas. Note as well how the titles and keys in these
examples reinforce cartographic manipulation.

Labor economists, who commonly adjust unemployment data
for seasonal effects, discourage some manipulation of time inter-
vals. After all, more people are seeking work in early summer,
when many high-school and college graduates enter the labor force
for the first time. And more people find at least temporary work
in November and December, the peak holiday shopping season.
Local seasonal effects, such as tourism and the temporary hiring
of field and cannery workers in agricultural areas, also require
seasonal adjustment.

Mortality, fertility, and other phenomena that do not affect all
segments of the population equally also require adjustment. Figure
11.20, a comparison of the age-adjusted death rate with the crude
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Figure 11.20. Maps of the crude death rate (top) and the age-adjusted death rate (bot-
tom] can present markedly different geographic patterns of mortality.

death rate, illustrates the wisdom of mapping demographically
adjusted rates. The map at the top is a simple rate, which does not
consider, for example, Maine’s relatively older population. When
the rates portrayed in the upper map are adjusted for age differ-
ences, Indiana and several southeastern states emerge as high-
rate areas whereas those in the Northeast slip to a lower category.
Age-adjustment allows the map at the bottom to reveal the effects
of relatively good health care and a higher socioeconomic status
in the New England, Middle Atlantic, and North Central states,
in contrast to greater poverty and less accessible health care in
the South.

Be skeptical of maps based on numbers. Because a single vari-
able can yield many different maps, don’t be silenced by the argu-
ment that more than one map would cause needless confusion. You
might ask to see several maps, or be given the opportunity to exper-
iment with categories and symbolization online or using software.
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Be wary of not only the known cartographic manipulator but also
the careless map author unaware of the effects of aggregation and
classification. Also question the definitions, measurements, short-
cuts, and motives of a government agency, research institute, or
polling firm that generously provides its data—even the most con-
scientious mapping effort is undermined by flawed data.



