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1 Introduction

The theory of Tschirnhaus transformations dates back to 1683, when Tschirn-
haus published a brief note claiming to present a general procedure for solv-
ing any polynomial equation in radicals.[19] Though flawed, the methods
introduced therein have stimulated a great deal of interesting research in the
following three centuries, including work of Lagrange, Hamilton, Sylvester,
Hilbert, Brauer, and B. Segre, among others. Unsurprisingly, given the long
time period across which this work is spread, the exact formulation of the
problem (as well as the notation used to describe it) has varied considerably.

A primary goal of this document is to provide an introduction to the
theory of Tschirnhaus transformations and to provide a coherent framework
in which the disparate results in this area can be clearly understood. Our
basic premise is that much of the work on Tschirnhaus transformations can
be expressed in terms of certain elementary questions of arithmetic geometry.
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Specifically, we will consider questions of the following form: let K be a
field (not necessarily algebraically closed) and suppose

X1, . . . , Xk ⊂ Pn−1
K

are hypersurfaces defined over K with di = deg(Xi). Is there a function
N(d1, . . . , dk) such that

n ≥ N(d1, . . . , dk)

is sufficient to ensure the intersection

X1 ∩ . . . ∩Xk ⊂ Pn−1
K

contains an L-point, for L a field extension K ⊆ L ⊂ K satisfying some
kind of “bounded complexity” property? For example, we might require L
to be a solvable extension of K, or for the degree of L/K to be bounded, or
L = K.

We discuss other notions of bounded complexity of a field extension in
section 4. In particular, we will consider the resolvent degree of a field exten-
sion. The concept of resolvent degree has its roots in Hilbert’s notion of the
number of parameters necessary to represent an “algebraic function”, partic-
ularly his work on Tschirnhaus transformations for the degree 9 equation.[12]
The first precise field-theoretic definition of this notion was given by Brauer
in 1977.[2] We review this definition and explain the relationship between
resolvent degree and weight of a field extension in section 4.1.

A second major aim of this document is to strengthen our understand-
ing of the connections between results in the classical theory of Tschirn-
haus transformations and the modern theory of resolvent degree. The theory
of resolvent degree was recently given new life by Farb and Wolfson, who
presented an equivalent geometric definition of resolvent degree and demon-
strated its connections to a number of interesting of interesting problems
in enumerative geometry.[6] The connection to the theory of Tschirnhaus
transformations was subsequently drawn explicitly by Wolfson, who general-
ized Hilbert’s work on the degree 9 equation to produce bounds on resolvent
degree using Tschirnhaus transformations.[21] Wolfson’s bounds have subse-
quently been sharpened by work of Alex Sutherland.[16, 10] As of the writing
of this thesis, these are the best-known results for bounds on resolvent degree.

A major portion of this document focuses on the “method of obliteration”
introduced by Sylvester in his 1886 paper on Tschirnhaus transformations.[18]
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This gives a method for determining points over field extensions of finite
weight, where we say L/K is of weight at most d if it can be factored into a
tower of extensions each of degree at most d. On the other hand, these re-
sults can be translated into statements about resolvent degree, as we discuss
in section 4.1.

Sylvester’s method turns out to be remarkably general. In sections 7 and
8 we provide an exposition of Sylvester’s method and produce new explicit
formulae for its most general form. Finally, we apply this method to the
problem of bounding resolvent degree. We show that when correctly adapted
and applied with its full power, Sylvester’s obliteration method can be used
to produce bounds which match or (in some cases) improve upon the best
previously known results.

2 Tschirnhaus Transformations - Preliminar-

ies and Overview

In 1683, Tschirnhaus wrote a brief note claiming to describe a method for
determining the roots of any polynomial in radicals.[19] Though his proof was
flawed, the technique of Tschirnhaus transformations which he introduced
has proven interesting a useful for reducing generic families of polynomials
into certain “canonical forms”.

The basic structure of the problem is as follows. Let K be a (not nec-
essarily algebraically closed) field with char(K) = 0, and fix an algebraic
closure K of K. Fix a monic degree n polynomial

p(x) = xn + a1x
n−1 + . . .+ an−1x+ an

in K[x]. Suppose p factors over K as

p(x) =
n∏

i=1

(x− λi).

In order to define a Tschirnhaus transformation of p we will need to
introduce some additional notation. Let sk(z0, . . . , zn−1) denote the kth ele-
mentary symmetric function in n variables, and let

T (x) = b0 + b1x+ b2x
2 + . . .+ bn−1x

n−1
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with b0, . . . , bn−1 indeterminates. For 1 ≤ k ≤ n we define

Ak(b0, . . . , bn−1) = sk (T (λ1), . . . , T (λn)) .

That is,

A1(b0, . . . , bn−1) =
n∑

i=1

T (λi)

A2(b0, . . . , bn−1) =
∑
i 6=j

T (λi)T (λj)

...

An(b0, . . . , bn−1) =
n∏

i=1

T (λi)

Note thatAk(b0, . . . , bn−1) is a homogeneous degree k polynomial inK[b0, . . . , bn−1];
although the definition makes use of the roots λi ∈ K, the coefficients of Ak

are symmetric functions of λ1, . . . , λn and hence lie in the K.
For example,

A1(b0, . . . , bn−1) = −
n∑

i=1

T (λi)

= −
n∑

i=1

(b0 + b1λi + . . .+ bn−1λ
n−1
i )

= −nb0 −

(
n∑

i=1

λi

)
b1 −

(
n∑

i=1

λ2i

)
b2 − . . .−

(
n∑

i=1

λn−1i

)
bn−1

is a homogeneous linear polynomial in K[b0, . . . , bn−1]. The power sums∑n
i=1 λ

k
i can be written in terms of elementary symmetric functions si(λ1, . . . , λn)

using Newton’s identities, and hence can be expressed in terms of the coeffi-
cients a1, . . . , an of p.

We can now define the polynomial

q(y) = yn+A1(b0, . . . , bn−1)y
n−1+ . . .+An−1(b0, . . . , bn−1)y+An(b0, . . . , bn−1)

in K[y, b0, . . . , bn−1]. Given a choice of values for b0, . . . , bn−1 in some sub-
extension L of K over K, q(y) becomes a polynomial in L[y]. In this context
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we say that T is a Tschirnhaus transformation and call q(y) the transformed
polynomial corresponding to p(x).

One can verify by direct calculation that

q(y) =
n∏

i=1

(y − T (λi)).

It follows that µ ∈ K is a root of q if and only if T (λi) = µ for some root λi of
p. Thus one can think of a Tschirnhaus transformation of p as a polynomial
transformation applied to the roots of p.

Now for 1 ≤ k ≤ n, define the kth Tschirnhaus hypersurface V (Ak) to
be the vanishing locus of Ak(b0, . . . , bn−1) in Pn−1

K
. A point of V (Ak) thus

corresponds to a Tschirnhaus transformation T such that the coefficient of
yn−k in the transformed polynomial q(y) is zero.

Tschirnhaus’s original idea involved finding a point in the intersection

V (A1) ∩ . . . ∩ V (An−1) ⊆ Pn−1
K

so that p(x) can be transformed via the corresponding Tschirnhaus transfor-
mation T to the solvable form

q(y) = yn + An.

One potential objection to this program is that it is not immediately obvious
that a Tschirnhaus transformation is invertible, so that the roots of p can
be recovered from the roots of q. This turns out not to be a major obstacle:
for most Tschirnhaus transformations it is possible to compute an inverse
rationally over K, and (except for the trivial case of a constant Tschirnhaus
transformation) it is always possible to recover the roots of p from those of
q by solving an equation of lower degree than p. This is described in detail
in appendix B.

A more serious problem is this: for Tschirnhaus’s method to produce a
solution to p(x) = 0 in radicals, the necessary point of V1 ∩ . . . ∩ Vn−1 must
be defined over a solvable extension L of K. Such a point need not exist.

Tschirnhaus did succeed in proving that one could find a Tschirnhaus
transformation defined over a quadratic extension of K such that A1 = A2 =
0 provided that n ≥ 3.

Proposition 1 (Tschirnhaus). Given any hypersurfaces V1 and V2 in Pn−1
K

with deg(Vi) = i, the intersection

V1 ∩ V2
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contains a point defined over a quadratic extension L of K provided n ≥ 3.
Thus given any polynomial p(x) ∈ K[x] with deg(p) ≥ 3 there is a

Tschirnhaus transformation T (x) ∈ L[x] which applied to p yields a trans-
formed polynomial of the form

q(y) = yn + A3y
n−3 + . . .+ An−1y + An.

It is easy to see that such a point exists: the problem reduces to deter-
mining a solution to a system of two equations: one of degree 1, and one of
degree 2. This just requires the quadratic formula.

With a bit more effort, one can write down the equations

A1(b0, b1, b2) = A2(b0, b1, b2) = 0

and solve for T explicitly, so Tschirnhaus’s method in the n = 3 case gives
a (rather laborious) alternative to Cardano’s method for solving cubic equa-
tions. We discuss this case in some detail in section 3.

More significantly, this shows that the roots of any degree n polyno-
mial can be determined solvably from the roots of a polynomial with two
fewer nonzero coefficients; informally, we have reduced the problem of solv-
ing degree n equations from an n-parameter problem to an (n−2)-parameter
problem, provided n ≥ 3.

More generally, we can consider the problem of putting a general degree
n polynomial into an (n − k)-parameter form by means of a Tschirnhaus
transformation satisfying

A1(b0, . . . , bn−1) = . . . = Ak(b0, . . . , bn−1) = 0

and defined over some suitably “nice” extension of K. Here Tschirnhaus’s
method proves fruitful provided n is sufficiently large relative to k.

The first result in this direction post-Tschirnhaus was given by Bring in
1786.[4]

Proposition 2 (Bring). Given any hypersurfaces V1, V2, V3 defined over K
with deg(Vi) = i, the intersection

V1 ∩ V2 ∩ V3 ⊆ Pn−1
K

contains a point defined over a solvable extension L of K provided n ≥ 5.
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Thus given any polynomial p(x) ∈ K[x] with deg(p) ≥ 5 there is a
Tschirnhaus transformation T (x) ∈ L[x] which applied to p yields a trans-
formed polynomial of the form

q(y) = yn + A4y
n−4 + . . .+ An−1y + An.

Bring’s result is discussed further, and a proof given, in section 3 below.
The key reduction is replacing the quadric surface V1∩V2 by a line contained
in it, which can be determined over a quadratic extension. We will also revisit
this result in section 8 as an easy application of the method of obliteration.

Bring’s result was later recovered independently and extended by Jerrard
in the mid-19th century.[13] Curiously, Jerrard claimed (as had Tschirnhaus
centuries earlier) to be able to solve any polynomial equation by means of
the method. (In particular, reducing the quintic to the solvable form y5 +
A5.) Jerrard’s work was investigated, clarified, and expanded upon, first by
Hamilton in 1836 then by Sylvester in 1887.[8, 18] This led to a collection of
results which are partially summarized in the following proposition.

Proposition 3 (Hamilton, Sylvester). There is a function N : N→ N such
that the following is true whenever n ≥ N(k):

For any hypersurfaces V1, . . . , Vk in Pn−1
K

with deg(Vi) = i, the intersection

V1 ∩ . . . ∩ Vk

contains a point defined over an extension L of K with the property that L/K
factors as a tower of finite extensions of degree at most k.

The first few values of N are N(2) = 3, N(3) = 5, N(4) = 10, N(5) = 44,
N(6) = 905.

For example, N(4) = 10 says that, for any polynomial p(x) ∈ K[x] with
deg(p) ≥ 10 there is a weight 4 extension L/K and a Tschirnhaus transfor-
mation T (x) ∈ L[x] which applied to p yields a transformed polynomial of
the form

q(y) = yn + A4y
n−4 + . . .+ An−1y + An.

A proof of this proposition – and an algorithm for computingN(k) –comes
from the “method of obliteration” introduced by Sylvester. This method is
discussed in detail in sections 7 and 8.

A significant shift in the framing of the problem was introduced by Hilbert
in his analysis of Tschirnhaus transformations for the degree 9 polynomial.[12]
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Hilbert sketched a geometric argument involving the existence of lines on a
cubic surface to prove that it is possible to determine a point of

V (A1) ∩ V (A2) ∩ V (A3) ∩ V (A4) ⊆ Pn−1
K

and thus remove 4 terms from a degree 9 polynomial by means of a Tschirn-
haus transformation. (Compare to N(4) = 10.)

Although determining a line on a cubic surface requires the solution of
an equation of degree 27, Hilbert argued that this equation itself can be
given in a “four-parameter form”. This is sufficient to show that the degree
9 equation itself depends on “algebraic functions of four-parameters”.

Hilbert’s result can be stated precisely using the resolvent degree of a field
extension, first defined by Brauer in 1977. We review the basic definitions,
following Brauer’s treatment, in section 4. In this language, Hilbert’s result
says that there exists a point of

V (A1) ∩ V (A2) ∩ V (A3) ∩ V (A4) ⊆ Pn−1
K

defined over an extension L/K of resolvent degree at most 4, provided n ≥ 9.
Hilbert’s result was subsequently refined by B. Segre and (independently)

Dixmier.[15, 5]

Proposition 4 (Segre, Dixmier). For any hypersurfaces V1, . . . , V4 in Pn−1
K

with deg(Vi) = i, the intersection

V1 ∩ V2 ∩ V3 ∩ V4

contains a point defined over an extension L of K with the property that L/K
factors as a tower of finite extensions of degree at most 5.

The proof of this proposition relies on a slightly different geometric idea
than Hilbert’s argument, and is discussed further in section 5.

Much more recently, Hilbert’s ideas were generalized by by Jesse Wolfson
to produce a collection of bounds on resolvent degree using Tschirnhaus
transformations, significantly improving on previously known bounds.[21]
Wolfson’s bounds have subsequently been sharpened by work of Alex Sutherland.[17]
In section 8 we show that these bounds can be reproduced and, in some cases,
further improved using Sylvester’s method of obliteration.
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3 Tschirnhaus Transformations for n = 3, 4, 5

We now consider some examples of Tschirnhaus transformations in low de-
gree. We discuss Tschirnhaus’s solution to the cubic (the only case explicitly
handled in Tschirnhaus’s original note), Lagrange’s approach to solving the
quartic using Tschirnhaus transformations, and Bring’s reduction of the quin-
tic to a one-parameter form. Bring’s argument is particularly important as
it introduces the idea of replacing a Tschirnhaus hypersurface V (Ai) by a
linear subspace to control the algebraic complexity of the problem.

3.1 Tschirnhaus’s Solution of the Cubic

For n = 3, Tschirnhaus’s method gives a general solution to the cubic equa-
tion. Recall that any cubic polynomial in K[x] can be put in the form

p(x) = x3 + a2x+ a3

by means of a linear change of variables.
To transform p(x) to the form

q(y) = y3 + A3

by means of a Tschirnhaus transformation T (x) = b0 + b1x+ b2x
2 it suffices

to determine a solvable point [b0 : b1 : b2] ∈ P3
K

such that

[b0 : b1 : b2] ∈ V (A1(b0, b1, b2)) ∩ V (A2(b0, b1, b2))

where V (A1) and V (A2) are the first and second Tschirnhaus hypersurfaces
defined in the previous section.

This is always possible. Recall A1 is a linear homogeneous polynomial in
b0, b1, b2, so

V (A1) ∼= P2
K
.

Further, A2 is degree 2 homogeneous, so the intersection

V (A1) ∩ V (A2)

is a degree 2 algebraic curve in P2
K

, and it is obviously possible to determine
a point on such a curve over a degree 2 extension of K.

More concretely, one can prove the following.
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Proposition 5 (Tschirnhaus). Consider a depressed cubic p(x) = x3+a2x+
a3 over a field K and let

∆ = −27a23 − 4a32

denote the discriminant of p. There is a Tschirnhaus transformation

T (x) = b0 + b1x+ b2x
2

defined over the quadratic extension L = K(
√
−3∆) such that setting

y = T (x)

yields a transformed polynomial

q(y) = y3 + A3,

where

A3 = (b31 + b1b
2
2a2 + b32a3)

√
−3∆

9
.

In particular, it suffices to take

b0 = 2a22/3, b1 =
−9a3 +

√
−3∆

6
, b2 = a2.

The elementary but somewhat cumbersome proof of this proposition is
given in Appendix C.

Example 1. Let p(x) = x3 − 6x+ 6. This has discriminant

∆ = −108.

Applying proposition 5, the Tschirnhaus transformation

T (x) = 24− 6x− 6x2

applied to p(x) yields the transformed polynomial

q(y) = y3 − 432.

Now let µ be a root of q and let us determine the corresponding root λ of
p. Such a λ must be a root of both p(x) and of T (x)− µ, so is a root of

GCD(x3+a2x+a3, b2x
2+b1x+b0−µ) =

(
b21 − b0b2 + b2µ+ b22a2

b22

)
x+

b0b1 − b1µ+ b22a3
b22

.
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It follows that

λ =
−b0b1 + b1µ− b22a3
b21 − b0b2 + b2µ+ b22a2

.

Plugging in the values of b0, b1, b2, a2, a3 for this example and simplifying
yields

λ =
µ− 12

µ− 6
.

Thus for example, taking the real root µ = 3
√

432 = 6 3
√

2 of q, we find that
the corresponding root of p is

λ =
6 3
√

2− 12

6 3
√

2− 6
=

3
√

2− 2
3
√

2− 1
.

The complex roots can be determined similarly.

3.2 Lagrange’s Solution to the Quartic

For n = 4, we can attempt to carry out the same procedure with a cubic
Tschirnhaus transformation. That is, given

p(x) = x4 + a1x
3 + a2x

2 + a3x+ a4

we seek a transformation T (x) = b0 + b1x+ b2x
2 + b3x

3 such that the trans-
formed polynomial

q(y) = y4 + A1y
3 + A2y

2 + A3y + A4

satisfies A1 = A2 = A3 = 0. Now the intersection V (A1) ∩ V (A2) ∩ V (A3) is
the intersection of a conic and a cubic curve in the plane V (A1). In general
two such curves will intersect in 6 points, which are governed by an equation
of degree 6, and it is not obvious whether any of these points will be defined
over the solvable closure of K.

Nonetheless, in 1771 Lagrange gave two proofs that Tschirnhaus’s method
nonetheless could be used to put any quartic into solvable form.[14] First,
he showed that for the particular equations A2 = 0 and A3 = 0 arising in
this context, the degree 6 equation governing their intersection always factors
into a pair of cubic equations, and so has solvable splitting field. Second, he
observed that to put p(x) in the solvable form

q(y) = y4 + A2y
2 + A4

requires only A1 = A3 = 0, a system with one linear equation and one cubic
equation, and this always admits solvable solutions.
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3.3 Bring’s Analysis of the Quintic

For n = 5, the insolvability of the quintic implies that there is no transfor-
mation T (x) = b0 + b1x+ b2x

2 + b3x
3 + b4x

4 defined over the solvable closure
of K transforming a general quintic polynomial p(x) = x5 + a1x

4 + a2x
3 +

a3x
2 + a4x+ a5 to

q(y) = y5 + A1y
4 + A2y

3 + A3y
2 + A4y + A5

with A1 = A2 = A3 = A4 = 0.
On the other hand, p can be put into a “one-parameter form” by means of

a solvable Tschirnhaus transformation. To prove this, it suffices to show that
there is a transformation T such that the transformed polynomial satisfies
A1 = A2 = A3 = 0, so is of the form

y5 + A4y + A5,

since then substituting z = (A4/A5)y and scaling we have

z5 + Az + A,

where A = A5
4/A

4
5. That such a T exists was first proven by Bring in 1786.[4]

Proposition 6 (Bring). Suppose V1, V2, V3 are hypersurfaces in Pn−1
K

with
deg(Vi) = i. If n ≥ 5, then there is a point of V1 ∩ V2 ∩ V3 defined over a
solvable extension of K.

In particular, this implies a degree n polynomial in K[x] can be put into
an n− 4-parameter form after taking a solvable extension of K.

Proof. It suffices to prove the result for n = 5. We can identify V1 with
Pn−2 = P3; let x0, x1, x2, x3 be homogeneous coordinates for this space. Then
V1∩V2 is a quadric surface in Pn−2, defined by the vanishing of some quadratic
form F (x0, x1, x2, x3). Since char(K) 6= 2, any quadratic form over K is
equivalent to a diagonal form, so we may assume

F (x0, x1, x2, x3) = c0x
2
0 − c1x21 + c2x

2
2 − c3x23.

Now let L = K(
√
c0,
√
c1,
√
c2,
√
c3). This is a solvable extension of K,

over which we have

F (x0, x1, x2, x3) = (
√
c0x0+

√
c1x1)(

√
c0x0−

√
c1x1)+(

√
c2x2+

√
c3x3)(

√
c2x2−

√
c3x3).

13



The vanishing locus of
√
c0x0 +

√
c1x1 and

√
c2x2 +

√
c3x3 is a line contained

in V1∩V2 and defined over L. In general this line intersects the cubic surface
V1∩V3 in 3 points, which can be determined by solving an equation of degree
3. Thus there is a point of V1∩V2∩V3 defined over a degree 3 extension of L.
Since L is a solvable extension of K, and any degree 3 extension is solvable,
this implies V1 ∩ V2 ∩ V3 contains a solvable point, as desired.

The key step in Bring’s proof is the determination of a line contained in
V1∩V2, which is possible exactly when n−1 ≥ 4. This reduces the total degree
of the system sufficiently so that a solvable solution is guaranteed to exist.
More generally, given hypersurfaces V1, . . . , Vk in Pn−1

K
with deg(Vi) = i, we

can reduce the total degree of the intersection V1 ∩ . . . ∩ Vk by replacing one
or more of the Vi with a linear subspace that it contains. Thus an essential
question is: given an extension L/K and integers k, d > 0, how large must n
be so that any degree d hypersurface in Pn

K
contains a k-plane defined over

L?
The examples we have considered thus far involved solvable extensions L

of K. This is not the only possible formulation of the problem and indeed
much of the historical work on Tschirnhaus transformations has not restricted
itself to transformations which are defined solvably over the base field. In the
next section we consider a number of different notions of the “complexity”
of a field extension which can be (and have been) adopted as constraints
on the field of definition of the Tschirnhaus transformation to be found. In
section 5 we give a historical overview of results concerning the reduction of
a degree n polynomial to (n − 5)-parameter form by means of Tschirnhaus
transformations; the relationship between the various results of Hamilton,
Sylvester, Hilbert, Segre, and others, for this problem can be best understood
in terms of the different notions of “bounded complexity” which they employ.

4 Tschirnhaus Transformations over Field Ex-

tensions of Bounded Complexity

A number of mathematicians have worked on the problem(s) of using Tschirn-
haus transformations to put univariate polynomials into certain canonical
forms. As the theory has developed, so too has the precise formulation of
the problem. Informally, we can think of this in terms of what one is “al-
lowed to do” to determine a transformation – we might insist on a “formula
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in radicals”, for example. These constraints have often been assumed rather
than stated explicitly. In this section we will introduce some field-theoretic
terminology that will allow us to describe several of the variant formulations
of the problem more precisely.

The basic form of the problem is this. Let K be a field and consider a
polynomial

p(x) = xn + a1x
n−1 + . . .+ an−1x+ an.

We would like to determine a Tschirnhaus transformation

T (x) = b0 + b1x+ . . .+ bn−1x
n−1

such that the coefficients of the transformed polynomial

q(x) = xn + A1x
n−1 + . . .+ An−1x+ An

satisfies some specified conditions; usually that A1 = . . . = Ar = 0 for some
r. Recall that Ai is a homogeneous degree i polynomial in b0, . . . , bn−1, with
coefficients in K, so we are looking for a point on the intersection of several
hypersurfaces in an (n− 1)-dimensional projective space. How large must n
be to ensure this is always possible? To make this question precise we need
to specify conditions on the field over which the coefficients bi of T may be
taken.

The maximally permissive choice would be to allow T to be defined over
the algebraic closure K. In this case the problem becomes uninteresting,
since the intersection

V (A1) ∩ . . . ∩ V (Ar−1)

always contains a K-point for r ≤ n.
Intuitively – particularly from a classical perspective – we might also want

the determination of the Tschirnhaus transformation T to be “simpler”, in
some sense, than solving the polynomial p. Indeed, over any extension of
K which contains all roots of p, the theory of Tschirnhaus transformations
again becomes trivial, as the following proposition shows.

Proposition 7. Let p(x) = xn + a1x
n−1 + . . . + an−1 + an and q(x) = xn +

c1x
n−1 + . . . + cn−1x + cn be polynomials in K[x]. If p has n distinct roots,

then for any extension L/K which contains the roots of P there exists a
Tschirnhaus polynomial

T (x) = b0 + b1x+ . . .+ bn−1x
n−1 ∈ L[x]

such that q is the transformed polynomial obtained by applying T to p.
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Proof. Let λ1, . . . , λn be the roots of p and let µ1, . . . , µn be the roots of q.
Recall that the transformed polynomial obtained by applying T to p is, by
definition,

n∏
i=1

(x− T (λi)).

Thus we need to show there is a polyonomial T such that T (λi) = µi for all
i. That is, the coefficients bi of T must be chosen to satisfy

b0 + b1λi + . . .+ bn−1λ
n−1
i = µi

for i = 1, . . . , n. This gives an n×n system of linear equations in b0, . . . , bn−1,
which we can write in matrix-vector form as

1 λ1 λ21 . . . λn−11

1 λ2 λ22 . . . λn−12
...

1 λn λ2n . . . λn−1n


 b0

...
bn−1

 =

µ1
...
µn

 .
This matrix is the Vandermonde matrix associated to the polynomial p. Its
determinant is given by ∏

1≤i<j≤n

(λi − λj).

Since p has distinct roots, this product is nonzero, so the system is nonsin-
gular and we can solve for the coefficients b0, . . . , bn−1 of T in terms of the
roots of p and q.

There are a number of natural ways to constrain what sorts of field exten-
sions L/K are permissible when determining a Tschirnhaus transformation.
An approach taken by Sylvester, among others, is to bound the highest de-
gree of any equation that must be solved in determining the transformation;
in other words, to consider finite towers of finite extensions each of degree at
most d. Following Sylvester’s terminology, we will say such an extension has
weight at most d. Finally, we will consider the resolvent degree of a field ex-
tension, with which Hilbert’s idea of expressing an algebraic function in terms
of algebraic functions of fewer parameters can be made precise; definitions
are given in the next subsection.
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4.1 Weight, Essential Dimension, and Resolvent De-
gree of a Field Extension

In this section we introduce the notions of weight, essential dimension, and
resolvent degree of a field extension. To define the latter two concepts rig-
orously we must shift perspective slightly; rather than considering any finite
extension L/K, as in previous sections, it is necessary to first fix an alge-
braically closed field A of characteristic zero and consider finite extensions
L/K with K an extension of A. A prototypical example would be A = C
and K = A(a1, . . . , an) with a1, . . . , an indeterminates, so K itself need not
be algebraically closed.

For convenience we will work over a fixed algebraically closed base field
A throughout the remainder of this document. On the other hand, any
subsequent results that do not involve resolvent degree or essential dimension
can be interpreted in the slightly more general context where K is any field
of characteristic zero (including, for example, the classical perspective with
K = Q).

Now let A be a fixed algebraically closed field of characteristic zero. Let
K be an extension of A, and let L be a finite extension of K. We will define
the weight, essential dimension, and resolvent degree of L/K (relative to A),
and discuss the relationship between these notions.

Definition 4.1. The weight of L/K, which we write wt(L/K), is the minimal
d such that L/K factors as a finite tower of finite extensions

K = L0 ↪→ L1 ↪→ . . . ↪→ Lr−1 ↪→ Lr = L

with degree [Li : Li−1] ≤ d for all i.

For the problem of removing r terms from the generic degree n polyno-
mial p(x) = xn + a1x

n−1 + . . . + an, Sylvester considers Tschirnhaus trans-
formations defined over extensions L of K of weight at most r. Informally,
this is a restriction on “elevation of degree”; recall that the coefficients of
such a transformation must satisfy a system of r equations A1, . . . , Ar with
deg(Ai) = i. Thus requiring wt(L/K) ≤ r essentially amounts to requiring
that any auxiliary equations introduced in the solution of the problem be of
degree at most r.

We next consider the notions of essential dimension and resolvent degree.
Given the classical flavor of our results, it will be most convenient to work
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with Brauer’s original 1977 definition.[2] Equivalent definitions – including a
purely geometric version – are given by Farb and Wolfson.[6]

Definition 4.2. The essential dimension of L/K relative to A, written
edA(L/K), is the minimal d such that L = K(λ) for some λ ∈ L satisfy-
ing

f0(u1, . . . , ud)λ
r+f1(u1, . . . , ud)λ

r−1+. . .+fr−1(u1, . . . , ud)λ+fr(u1, . . . , ud) = 0

for some polynomials f0, . . . , fr ∈ A[x1, . . . , xd] and elements u1, . . . , un ∈ K.

For ease of notation we will write ed(L/K) for edA(L/K) henceforth,
omitting the explicit dependence on the fixed base field A.

Informally, the definition says we have ed(K(λ)/K) ≤ d if λ is a value
of an algebraic function of at most d parameters. In particular, when K =
A(a1, . . . , an) and λ is a root of the generic degree n polynomial, we have the
following lemma.

Lemma 1. Given K = A(a1, . . . , an), let d(n) denote the minimal integer
m such that there exists a non-constant Tschirnhaus transformation defined
over A which transforms the generic degree n polynomial p(x) = xn+a1x

n−1+
. . .+ an−1x+ an to a polynomial of the form

q(x) = xn + A1(u1, . . . , um)xn−1 + . . .+ An−1(u1, . . . , um)x+ An(u1, . . . , um)

where A1, . . . , An are polynomials in K[x1, . . . , xm], and u1, . . . , um ∈ K.
Then if L = K[x]/(p) we have

d(n) ≥ ed(L/K).

Proof. Let λ = [x] ∈ L. Then λ is a primitive element for L as an extension
of K, so L = K(λ), and λ satisfies

p(λ) = λn + a1λ
n−1 + . . .+ an−1λ+ an = 0.

Suppose there is a Tschirnhaus transformation T (x) = b0 + b1x + . . . +
bn−1x

n−1 ∈ A[x] such that T transforms p to a polynomial q of the form

q(x) = xn +A1(u1, . . . , um)xn−1 + . . .+An−1(u1, . . . , um)x+An(u1, . . . , um),

with A1, . . . , An are polynomials in K[x1, . . . , xm], and u1, . . . , um ∈ K.
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Let µ = T (λ). Then µ is also a primitive element of L; see Corollary 3.3
and Example 3.4 of [21].

In fact, in this context (K = A(a1, . . . , an) and T defined over A) any non-
constant Tschirnhaus transformation T is invertible in the sense of Appendix
B, so that λ can be recovered rationally over K from µ = T (λ), and this
implies µ is a primitive element.

The key observation is that any two roots of the generic polynomial p(x)
are algebraically independent over A. Thus if λ′ 6= λ is another root of p,
one cannot have

T (λ) = T (λ′)

for any non-constant Tschirnhaus transformation T with coefficients in A. It
follows then that

gcd(T (x)− µ, p(x))

is linear, so λ is a root of a linear polynomial with coefficients in K(µ).
We thus have K[x]/(p) = K(µ) and by definition of the Tschirnhaus

transformation T sends roots of p to roots of q, so

µn + A1(u1, . . . , um)µn−1 + . . .+ An−1(u1, . . . , um)µ+ An(u1, . . . , um).

By definition of essential dimension, this means

ed(L/K) ≤ m.

Using this relationship, Buhler and Reichstein have shown that d(n) ≥
[n/2] for all n.[3]

The notion of resolvent degree relates to essential dimension in the same
way that weight relates to degree. That is, an extension is of bounded resol-
vent degree if it factors as a finite tower of extensions of bounded essential
dimension.

Definition 4.3. The resolvent degree of L/K relative toA, written RDA(L/K)
is the minimal d such that there is a tower of finite extensions

K = L0 ↪→ L1 ↪→ . . . ↪→ Lr−1 ↪→ Lr

with L ↪→ Lr and edK(Li/Li−1) ≤ d for i = 1, . . . , r.
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As with essential dimension, we will generally omit the subscript and
write simply RD(L/K).

Definition 4.4. Let RD(n) denote the supremum of RD(L/K) over all de-
gree n field extensions L/K over A.

For any such extension, the primitive element theorem implies L = K(λ),
where λ is a root of a monic degree n polynomial p(x) over K, so RD(L/K) ≤
ed(L/K) ≤ n and so RD(n) ≤ n. In subsequent sections we will produce
improved bounds on RD(n) using Sylvester’s method of obliteration

As a first example, for n = 2 we have RD(2) = 1, essentially by the
quadratic formula. More precisely, suppose L/K is degree 2 extension. Let
λ be a primitive element and p(x) = x2 + a1x + a2 its minimal polynomial.
By the quadratic formula,

λ =
−a1 ±

√
a21 − 4a2

2
,

so
√
a21 − 4a2 is also a primitive element, with minimal polynomial x2−(a21−

4a2). It follows that edA(L/K) = 1 and so RDA(L/K) = 1.
Slightly less trivially, Cardano’s solution to the cubic implies RD(3) = 1.

Let L/K be a cubic extension with λ a primitive element. After a change
of variables, we may assume the minimal polynomial for λ is of the form
x3 + a2x+ a3. Then Cardano’s formula says that

λ =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27

for some choice of cube roots. Thus there is a tower of extensions

K ↪→ L1 = K

(√
q2

4
+
p3

27

)
↪→ L2 = L1

 3

√
−q

2
+

√
q2

4
+
p3

27


↪→ L3 = L2

 3

√
−q

2
−
√
q2

4
+
p3

27


with L ↪→ L3. L1/K is quadratic, so ed(L1/K) = 1, and L2/L1 and L3/L1

are cyclic extensions generated by elements with minimal polynomials of the
form x3 − a, so are also essential dimension 1. Thus RD(L/K) = 1.
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Similarly, RD(4) = 1, and RD(L/K) = 1 for any solvable extension L/K.
On the other hand, RD(L/K) = 1 does not imply L/K is solvable; at the
end of this section we show that Bring’s reduction of the quintic to a one-
parameter form proves that RD(5) = 1.

The next two lemmas will allow us to translate results for Tschirnhaus
transformations over fields of bounded weight into bounds on RD(n).

Lemma 2. If L is an extension of K over A with wt(L/K) ≤ d, then
RD(L/K) ≤ RD(d).

Proof. Since wt(L/K) ≤ d, there is a tower of extensions

K = L0 ↪→ L1 . . . ↪→ Lr

with L ↪→ Lr and deg(Li/Li−1) ≤ d and hence RD(Li/Li−1) ≤ RD(d) for i =
1, . . . , r. This implies each extension Li/Li−1 factors as a tower of extensions
of essential dimension at most RD(d), so L/K factors as a tower of such
extensions and so RD(L/K) ≤ RD(d).

Lemma 3. Let K be any extension of A. Suppose that for any degree n
polynomial p(x) = xn+a1x

n−1+. . .+an−1x+an ∈ K[x] there is a nonconstant
Tschirnhaus transformation T (x) = b0 + b1x + . . . + bn−1x

n−1 with bi ∈ L
such that the transformed polynomial is of the form

q(y) = yn + Ary
n−r + . . .+ An−1y + An

and such that RD(L/K) ≤ n− r. Then

RD(n) ≤ max{n− r,RD(n− 1)}.

Proof. Let M/K be any degree n extension with K an extension of A. We
will show RDA(M/K) ≤ n− r.

By the primitive element theorem, M = K(λ) for some λ ∈ M . Let
p(x) = xn+a1x

n−1+ . . .+an be the minimal polynomial of λ. By hypothesis,
there is a Tschirnhaus transformation T with coefficients in a field L such
that T (λ) is a root of q(y) = yn + Ar+1y

n−r−1 + . . . + An−1y + An and
RD(L/K) ≤ n− r.

Now consider the field L(T (λ)). Note that λ is a solution to

gcd(T (x)− T (λ), p(x)).
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The degree of this polynomial is the number of roots of p(x) which map to
the same value T (λ). Since p is a minimal polynomial, it is irreducible, and
has all roots distinct. Since T is degree at most n − 1, it can map at most
n − 1 distinct values to T (λ). Hence λ is a root of a degree at most n − 1
polynomial over L(T (λ)).

Thus there is a degree n−1 extension L′/L(T (λ)) which contains λ. Since
L′ is an extension of L (and hence of K), L′ contains M = K(λ).

We now have a tower of extensions

K ↪→ L ↪→ L(T (λ)) ↪→ L′

with M ⊂ L′.
By assumption, RD(L/K) ≤ n− r.
Moreover, we can show

RD(L(T (λ))/L) = n− r.

To see this, note that T (λ) is a root of

q(y) = yn + Ary
n−r + . . .+ An−1y + An.

Making a further substitution z = (Ar−1/Ar)y and scaling produces a monic
polynomial

zn + A′rz
n−r + . . .+ A′n−1z + A′n

with A′r = A′r−1. It follows that

ed(L(T (λ))/L) ≤ n− r.

Finally, RD(L′/L(T (λ))) ≤ RD(n− 1), by Lemma 2.
Thus we have

RD(M/K) ≤ max{RD(L/K),RD(L(T (λ)/L),RD(L′/L(T (λ)))}
= max{n− r,RD(n− 1)}

as claimed.
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4.2 Deriving Bounds on RD(n)

The lemmas of the previous section, particularly lemma 3, can be used to
translate results from the theory of Tschirnhaus transformations into bounds
on resolvent degree. In this section we carry out this translation for the low
degree examples previously considered, including Bring’s result for n ≥ 5.

It is well known that any polynomial p(x) over K can be put into the
form

yn + A2y
n−2 + . . .+ An

by means of a linear change of variables y = b0 + b1x. Viewing this as a
linear Tschirnhaus transformation defined over K, we can apply lemma 3 to
conclude

RD(n) ≤ max{n− 2,RD(n− 1)} = n− 2.

Next, Tschirnhaus proved that any polynomial p of degree n ≥ 3 over K
can be put into the form

q(y) = yn + A3y
n−3 + . . .+ An

by means of a Tschirnhaus transformation T defined over an extension L/K
of weight 2 (in fact of degree 2). Hence by lemma 3, for n ≥ 3,

RD(n) ≤ max{n− 3,RD(n− 1)}.

But RD(n− 1) ≤ n− 1− 2 = n− 3 by the result of the previous paragraph,
so we have RD(n) ≤ n− 3.

Finally, let us consider Bring’s result for n ≥ 5. This says that given any
field K (over A) and any degree n ≥ 5 polynomial p over K, we can produce
a Tschirnhaus transfomation T over a field L with wt(L/K) ≤ 3 and such
that T transforms p into the form q(y) = yn +A4y

n−4 + . . .+An. By lemma
2, RD(L/K) ≤ RD(3) = 1, and so by lemma 3,

RD(n) ≤ max{n− 4,RD(n− 1)}.

Since n − 1 > 3, we have RD(n − 1) ≤ n − 1 − 3 = n − 4 by the previous
paragraph, so

RD(n) ≤ n− 4

for n ≥ 5.
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5 Removal of Four Terms by Means of a Tschirn-

haus Transformation

Bring’s result, discussed in section 3.3, allows any degree n polynomial with
n ≥ 5 to be transformed to a polynomial of the form

q(y) = yn + A1y
n−1 + . . .+ Ay

n−1 + An

with A1 = A2 = A3 = 0 and A4 = A5, by means of a solvable Tschirnhaus
transformation. Informally, any such polynomial can be put in an “(n− 4)-
parameter form”. At the end of the preceding section, we saw that this
impliles RD(n) ≤ n− 4 for n ≥ 5

The natural next case to consider is what bound on n guarantees a poly-
nomial of degree n can be put into an (n−5)-form by means of a Tschirnhaus
transformation defined over an algebraic extension L/K satisfying some no-
tion of bounded complexity? Specifically we will consider results where either
the weight or the resolvent degree of L/K is subject to some given bound. In
particular, this allows for the determination of n such that RD(n) ≤ n− 5.

To make this more precise we first briefly review the notion of a Tschirn-
haus transformation. Let

p(x) = xn + a1x
n−1 + . . .+ an−1x+ an ∈ K[x].

Recall that a Tschirnhaus transformation is a polynomial transformation of
the roots of p. More precisely, we consider Tschirnhaus transformations of
the form

T (x) = b0 + b1x+ . . .+ bn−1x
n−1.

The coefficients bi of T are to taken to lie in an extension L/K satisfying
some bound on either wt(L/K) or RDA(L/K).

Given such a transformation T , if p has roots λ1, . . . , λn, then we form
the transformed polynomial

q(x) =
n∏

i=1

(x− T (λi)) = xn + A1x
n−1 + . . .+ An−1x+ An.

The Ai are homogeneous degree i polynomials in K[b0, . . . , bn−1], and q ∈
L[x]. We consider the problem of determining b0, . . . , bn−1 such that A1 =
A2 = A3 = A4 = 0.
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Since Ai is a homogeneous degree i polynomial in K[b0, . . . , bn], the van-
ishing locus of Ai is a degree i hypersurface Vi = V (Ai) in Pn−1

K
. Thus it

suffices to consider the slightly more general problem: given hypersurfaces
V1, V2, V3, V4 in Pn−1

K
with deg(Vi) = i, does there exist a point in the inter-

section
V1 ∩ V2 ∩ V3 ∩ V4

defined over an extension L/K of appropriately bounded complexity?
In these terms, the results described in this section can be summarized

in the following proposition.

Proposition 8. Let V1, V2, V3, V4 be hypersurfaces in Pn−1
K

with deg(Vi) = i,
and let

X = V1 ∩ V2 ∩ V3 ∩ V4.

(a) If n ≥ 10, then X contains a point defined over a solvable extension of
K. (In fact, over a weight 4 extension.)

(b) If n ≥ 9, then X contains a point defined over an extension L/K with
RDA(L/K) ≤ 4.

(c) If n ≥ 9 then X contains a point defined over an extension L/K with
wt(L/K) ≤ 5.

These results come from several different sources. For part (a), work of
Jerrard, Hamilton, and Sylvester shows that n = 10 is sufficient.[13, 8, 18]

Part (b) is due to an argument of Hilbert, using the existence of 27 lines
on a cubic surface to show that that n = 9 suffices if we require only that T
be defined over a field L with RDA(L/K) ≤ 4.[12]

The statement of part (c) was first proposed by Raymond Garver as a
refinement of Hilbert’s result: that T could be determined over a field of
weight 5 when n = 9.[7] Unfortunately, Garver’s proof is erroneous, as we
show in section 5.3. Moreover, there appears to be a potential obstruction to
such a result: Hilbert’s method for finding the necessary Tschirnhaus trans-
formation requires finding a line on a cubic surfaces; the monodromy group
of this problem is known and prohibits a solution of weight 5 in general.[9]

On the other hand, Hilbert’s claim can be strengthened to exactly Garver’s
assertion. Correct proofs of this were given independently by Dixmier and
Segre.[15, 5] In section 5.4 we describe the core geometric idea in Segre’s ap-
proach and how it differs from Hilbert’s; in particular, Segre’s method does
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not require the determination of a line on a cubic surface, and so avoids the
aforementioned monodromy obstruction.

5.1 Transformations over Solvable Extensions of K

In this section we consider the following problem:

Problem 1. What is the minimal degree n such that, for any polynomial
p(x) = xn+a1x

n−1+. . .+an−1x+an in K[x], we can determine a Tschirnhaus
transformation T (x) = b0+b1x+. . .+bnx

n−1 with coefficients in some solvable
extension L of K, such that in the transformed polynomial

q(x) =
n∏

i=1

(x− T (λi)) = xn + A1x
n−1 + . . .+ An−1x+ An

we have A1 = A2 = A3 = A4 = 0 ?

In other words, when is there a “formula in radicals” to determine a
Tschirnhaus transformation which removes 4 intermediate terms from a given
polynomial? As mentioned in the preceding section, Ai is a homogeneous
degree i polynomial in K[b0, . . . , bn]. Thus the vanishing locus of Ai is a
degree i hypersurface in Pn−1

K , and to determine a point on the intersection of
these hypersurface is to determine the necessary Tschirnhaus transformation.
This motivates the following reformulated question:

Problem 2. What is the minimal n such that, given any hypersurfaces
V1, V2, V3, V4 of degree 1, 2, 3, 4 in Pn−1

K , the intersection V1 ∩ V2 ∩ V3 ∩ V4
is guaranteed to contain at least one point defined over a solvable extension
of K?

It should be observed that this is not quite equivalent to our original
problem, since we have passed from the vanishing loci of A1, . . . , A4 (which
are specific polynomials in b0, . . . , bn determined by the set-up of the problem
and the choice of polynomial p) to four arbitrary hypersurfaces, about which
only the degree is known. However, in all that follows, we will make no use
of the specific form of the polynomials A1, . . . , A4, only keeping track of their
degree and the degrees of any auxiliary equations that arise.

Now, if n − 1 < 4, then V1 ∩ V2 ∩ V3 ∩ V4 may contain no points at all
(even over the algebraic closure K), so clearly we need at least n − 1 ≥ 4.
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But for n − 1 = 4, by Bezout’s theorem there will in general be 4! = 24
points of intersection, which are governed by an equation of degree 24 which
need not be solvable. We can ensure T is defined over a solvable extension
of K if T can be determined without solving any equation of degree greater
than 4. (In other words, if T ’s field of definition can be obtained by a tower
of extensions of degree at most 4, then this field is necessarily solvable.)
This was first shown to be possible by Jerrard, for n = 11.[13] Jerrard’s ideas
were subsequently clarified, refined, and extended first by Hamilton and then
Sylvester.[8, 18] Below we sketch an informal proof of this result, hewing close
to Sylvester’s treatment.

This result can also be deduced from a very simple calculation once we
have developed the ideas and notation of Sylvester’s “method of obliteration”
in section 8. Indeed, the method derives from a relatively straightforward
generalization of the proof below. Here our goal is to emphasize the main ge-
ometric ideas without getting bogged down in the combinatorial bookkeeping
of the more general obliteration formulae.

Proposition 9 (Jerrard, Hamilton, Sylvester). Given hypersurfaces V1, V2, V3, V4
of degree 1, 2, 3, 4 in P10

K , there exists a point in the intersection V1 ∩ V2 ∩
V3 ∩ V4 over a solvable extension of K. In particular, there exists a point
over an extension of weight 4.

Proof. The key idea is to first find a line contained in the intersection V1 ∩
V2 ∩ V3. Then we can intersect this line with V4; and computing the points
of intersection requires only solving an equation degree 4.

Thus our problem becomes: how to (solvably) determine such a line?
The idea is as follows: find a point Q ∈ V1 ∩ V2 ∩ V3, then look for a point
X = (x0, . . . , x10) such that X +λQ is in V1∩V2∩V3 for any λ ∈ K. To find
such a point we view fi(X+λQ) as a polynomial in λ and require that every
coefficient of λ vanishes. For example, for f2(X + λQ) we have the constant
coefficient, the coefficient of λ, and the coefficient of λ2; these coefficients are,
respectively, of degree 2, 1, and 0 with respect to x0, . . . , x10. Assembling all
such coefficients from fi(X + λQ) we find that X must satisfy a system of
equations with one equation of degree 3, two equations of degree 2, and three
equations of degree 1. Actually, we must add one more equation of degree
one: we must ensure X is not a multiple of Q, and we can do this by choosing
a hyperplane in P9 disjoint from Q.

Now to solve this new system, we repeat our trick: we first determine
a line lying in the intersection of two quadrics and four hyperplanes, then
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intersect this line with the remaining cubic hypersurface. Repeating the
strategy of the previous paragraph, we can find such a line by finding a point
solution to a system with two quadrics and seven hyperplanes.

Finally, we need to find a point on the intersection of two quadrics and
seven hyperplanes. But any quadric hypersurface in P3

K contains a line de-
fined over a quadratic extension of K, so we can solvably determine a line on
the the intersection of a single quadric hypersurface and seven hyperplanes
in P10, then intersect this line with the single remaining quadric, and we’re
done.

In particular, this implies that one can solvably determine a Tschirnhaus
transformation removing the first four intermediate terms from any polyno-
mial of degree n ≥ 11. In fact, as Hamilton recognized, this bound can be
improved slightly to n ≥ 10 with only a minor modification to the above
proof. After reducing the problem to finding a point on the intersection of
two quadrics and seven hyperplanes, instead of looking for a line, we can
find a plane contained in the seven hyperplanes. Then intersecting the two
quadrics with this plane, the problem is reduced to finding a point on the
intersection of two plane conics; this requires at worst the solution of a degree
4 equation. The ambient dimension necessary for this procedure to succeed
is just the number of equations in the system, n = 2 + 7 = 9. Hence we
obtain:

Proposition 10 (Hamilton, Sylvester). Given hypersurfaces V1, V2, V3, V4 of
degree 1, 2, 3, 4 in P9

K, there exists a point in the intersection V1∩V2∩V3∩V4
over a solvable extension of K. In particular, such a point can be determined
over an extension of weight 4.

Thus for n ≥ 10, given a polynomial p ∈ K[x] of degree n there exists
a Tschirnhaus transformation T defined over a solvable extension of K such
that the transformed polynomial q is of the form

q(x) = xn + A5x
n−5 + . . .+ An−1x+ An.

This remains the lowest known bound for this particular formulation of the
problem. In the next section, we will discuss Hilbert’s bound of n ≥ 9 for a
variant of the problem in which a weaker constraint is placed on the field of
definition of T .
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5.2 Transformations over Fields of Bounded Resolvent
Degree: Hilbert’s Argument

In the previous section we saw that for any field K extending the fixed
algebraically closed base field A, and any degree n polynomial p(x) ∈ K[x]
with n ≥ 10, p can be put into the n− 4 parameter form

q(x) = xn + A5x
n−5 + . . .+ An−1x+ An

by means of a Tschirnhaus transformation T defined over a solvable extension
L of K. In particular, this implies RD(L/K) = 1. By lemma 3, then, we
have

RD(n) ≤ max{n− 5,RD(n− 1)}.
for n ≥ 10. Moreover, Bring’s result tells us that RD(n−1) ≤ n−1−4 = n−5
since n− 1 ≥ 5, so we have

RD(n) ≤ n− 5

for n ≥ 10.
To obtain this result it would have sufficed to show that T could be

determined over an extension L of K with RD(L/K) ≤ n− 5; the condition
that L/K be solvable (so that RD(L/K) ≤ 1) is far stronger than what is
needed.

In a short 1927 paper Hilbert sketched a proof of the following proposition.[12]

Proposition 11 (Hilbert). Let n ≥ 9 and let K be any extension of A. Given
hypersurfaces V1, V2, V3, V4 in Pn−1

K
with deg(Vi) = i, the intersection V1∩V2∩

V3 ∩ V4 contains a point defined over an extension L/K with RD(L/K) ≤ 4.

An immediate corollary is that any degree n ≥ 9 polynomial p(x) ∈ K[x]
can be put into the form

q(x) = xn + A5x
n−5 + . . .+ An−1 + An

by means of a Tschirnhaus transformation defined over an extension L/K
with RD(L/K) ≤ 4 ≤ n− 5. Thus

RD(n) ≤ n− 5 for n ≥ 9.

We now briefly summarize Hilbert’s argument. As in the work of Sylvester
and Hamilton, the strategy is to find a line contained in the intersection
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of V1 ∩ V2 ∩ V3, then intersect this line with V4 to determine a point. The
intersection V1∩V2 determines a quadric surface in Pn−2, and when n−2 ≥ 7
this quadric surface contains a 3-plane defined over a solvable extension L0

of K. Intersecting this 3-plane with V3, the problem is reduced to finding
a line on a cubic surface in P3

L0
defined over some suitable extension of L0.

Since L0 is solvable, RD(L0/K) = 1.
There are 27 such lines, determined by the roots of an equation of degree

27. In general these will be defined over a solvable extension of L0. On
the other hand, the equation of a general cubic surface can be put in the
“pentahedral form”

x30 + x31 + x32 + x33 + (v0x0 + v1x1 + v2x2 + v3x3)
3 = 0

over a degree 5 extension L1/L0. Since RD(5) = 1, by lemma 2 we have
RD(L1/L0) = 1. Now, the coefficients of the degree 27 equation govern-
ing the lines on a cubic surface defined by an equation in pentahedral form
can be taken to be polynomial functions of the four parameters v0, v1, v2, v3.
It follows that there exists a line defined over an extension L2/L1 with
RD(L2/L1) ≤ 4. Finally, the points of intersection of this line with V4 are de-
fined over a degree 4 extension L3/L2, with RD(L3/L2) ≤ RD(4) = 1. Thus
there is a point of V1∩V2∩V3∩V4 defined over L3, and we have RD(L3/K) ≤ 4
since L3/K factors over a tower of extensions each of resolvent degree at most
4.

5.3 An Analysis of Garver’s Proof

A general cubic surface in P3
K

contains 27 lines, corresponding to the roots
of an equation of degree 27. Given a homogenous degree 3 polyomial f ∈
K[X, Y, Z,W ], how hard is it to determine one of the lines lying on V (f)?
On the one hand, as Hilbert observed, since a general cubic surface can be
put into the “pentahedral form”

X3 + Y 3 + Z3 +W 3 + (v1X
3 + v2Y

3 + v3Z
3 + v4W

3),

the degree 27 equation governing the lines depends only on the four param-
eters v1, v2, v3, v4; it follows that the lines are defined over a field extension
L/K with RD(L/K) ≤ 4. On the other hand, it was shown by Harris that
the monodromy group of the 27 lines is W (E6), and that this is an obstruc-
tion to determining a line over any solvable extension of K.[9] The same
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monodromy obstruction implies a line cannot be determined over any weight
5 extension.

This last statement is in contradiction with Garver’s work on Tschirnhaus
transformations for degree n ≥ 9 polynomials: following Hilbert’s sketch,
Garver claimed one could reduce a general degree 9 polynomial to a 4-
parameter form without solving any equation of degree greater than 5. To
resolve the conflict, we turn now to a careful analysis of Garver’s proof, and
show that his argument, while clever, contains a fatal error.

Beginning with a homogeneous degree three polynomial in the pentahe-
dral form

f(X, Y, Z,W ) = X3 + Y 3 + Z3 +W 3 + (v1X
3 + v2Y

3 + v3Z
3 + v4W

3)

Garver makes the substitutions

X = s+ 1

Y = a2s+ b2

Z = (−v1 − v2a2)s/v3 + b3

W = b4.

then shows one can solve for a2, b2, b3, b4 in terms of v1, v2, v3, v4 so that
the polynomial f(X(s), Y (s), Z(s),W (s)) vanishes identically in s. This is
sufficient to determine a line contained in V (f) provided that the resulting
expressions X(s), Y (s), Z(s),W (s) are not all scalar multiples of one another;
in this case we would determine only a point in projective space. We will
show that this is indeed what happens.

First, to make the s2 term of f(X(s), Y (s), Z(s),W (s)) vanish, we must
solve

1 + a32 −
(
v1 + v2a2

v3

)3

= 0

for a2, then set a3 = −(v1 + v2a2)/v3. Observe that a2 6= 0 and

1 + a32 + a33 = 0.

Next, to make the coefficients of s2 and s vanish, we must solve the system

1 + a22b2 + a23b3 = 0.

1 + a2b
2
2 + a3b

2
3 = 0.
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Since 1 + a32 + a33 = 0, we can obtain a solution by taking b2 = a2, b3 = a3.
In fact, this is the only solution: we can solve for b2 in terms of b3 to reduce
this system to the single quadratic equation(

a3 +
a43
a32

)
b23 −

2a23
a32
b3 +

1 + a32
a32

= 0.

This has discriminant(
−2a23
a32

)2

− 4

(
a3 +

a43
a32

)(
1 + a32
a32

)
= −a3(a

3
2 + a33 + 1)

a32
= 0,

since 1 + a32 + a33 = 0, so has a unique solution.
Finally, the term free of s is

1 + b32 + b33 + b34 + (v1 + v2b2 + v3b3 + v4b4)
3,

but
1 + b32 + b33 = 1 + a32 + a33 = 0

and

v1 + v2b2 + v3b3 = v1 + v2a2 + v3a3 = v1 + v2a2 + v3(−v1 − v2a2)/v3 = 0,

so the equation to solve for b4 simplifies to

(1 + v34)b34 = 0

and b4 = 0 is the only solution.
Thus Garver’s substitution becomes

X = s+ 1

Y = a2(s+ 1)

Z = a3(s+ 1)

W = 0,

so every value of s yields the same point in projective space.
This shows that a substitution of Garver’s proposed form cannot deter-

mine a line on a cubic surface, so his proof cannot succeed. On the other
hand, the result claimed by Garver is actually true, as we discuss in the next
section.
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5.4 Segre’s Result

Hilbert’s 1927 paper on Tschirnhaus transformations in the degree n ≥ 9
case appears to have been the first to frame the problem in terms of the
resolvent degree (though he did not use this term) of the field over which
the transformation is defined, rather than its weight.[12] This was a powerful
shift in perspective which paved the way for much of the recent progress on
Tschirnhaus transformations in [21, 16, 10].

Nonetheless, there continued to be interest post-Hilbert in determining
more precisely the degrees of the equations which must be solved to deter-
mine Tschirnhaus transformations of certain kinds – that is, in bounding the
weight of the field of definition of the transformation. For example, Garver’s
work raises the question: is it possible to find a Tschirnhaus transformation
reducing a general degree 9 polynomial to an n− 5 parameter form without
solving any equation of degree greater than 5?

In section 5.3, we showed that Garver’s attempt to provide a proof using
this method was not successful. Perhaps surprisingly, then, this was proven
to be possible by Segre in 1945.[15] Segre’s argument does not require the
determination of a line lying on a cubic surface, and so avoids any monodromy
obstruction.

Proposition 12 (Segre). Suppose n ≥ 9. For any hypersurfaces V1, V2, V3, V4
in Pn−1

K
with deg(Vi) = i, there is an extension L/K of weight at most 5 such

that the intersection
V1 ∩ V2 ∩ V3 ∩ V4

contains an L-point.
In particular, any polynomial of degree n ≥ 9 can be put into an n −

5 parameter form by means of a Tschirnhaus transformation which can be
determined without solving any equation of degree greater than 5.

Proof. It is sufficient to find a line contained in V1 ∩ V2 ∩ V3 defined over an
extension of weight at most 5. As in the proof of Proposition 9 to determine
the necessary line we first find a point Q ∈ V1∩V2∩V3, then look for a point
P such that P +λQ is in V1∩V2∩V3 for any λ; then P must satisfy a system
S with 1 cubic, 2 quadrics, and 3 linear equations.

To complete the proof we must show that S admits a solution over an
extension L′/L with wt(L′/L) ≤ 5. It suffices here to find a line satisfying
the 2 quadrics and 3 linear equations. They key fact which Segre makes use
of is that the intersection of two quadrics in P4

L
contains 16 lines, which are
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defined over an extension of weight 5. Intersecting one of these lines with
the remaining cubic equation gives the desired solution to S.

6 General Bounds for Removing r Terms

As before let A be an algebraically closed field of characteristic zero and let K
be an extension of A. Thus far we have considered the problem of removing
r terms from a degree n polynomial p ∈ K[x] by means of a Tschirnhaus
transformation in detail only for small values of r. To recap, the r = 1 case is
the standard reduction of a polynomial to its depressed form, which requires
only an A-linear change of variables. To remove r = 2 terms it is sufficient
to solve a system of two polynomials – one linear and one quadratic – so this
can always be done over a quadratic extension of K; in particular, for n = 3
this gives an alternative to Cardano’s method for the solution of the cubic
in radicals, as discussed in section 3. The r = 3 case is handled by Bring’s
analysis of the quintic (and its generalization to any n ≥ 5 polynomial), which
shows that the removal of 3 terms can always be accomplished solvably.

Finally, in the previous section we considered several distinct approaches
to the problem of removing r = 4 terms from a degree n polynomial by
means of a Tschirnhaus transformation. In this case we saw that the bound
obtained for n depends on what restrictions are placed on the field extension
L/K over which the necessary Tschirnhaus transformation is defined.

In this section, we consider the problem of removing an arbitrary number
of terms r from a degree n polynomial in K[x] by means of a Tschirnhaus
transformation defined over L/K, subject to some restriction on L/K. More
precisely, for some fixed restriction (or class of restrictions) on L/K, does
there exist a function F (r) such that for all n ≥ F (r), it is posible to reduce
an arbitrary degree n polynomial p ∈ K[x] to an (n− r)-parameter form by
means of a Tschirnhaus transformation defined over L?

As in previous sections, we can recast this problem in geometric terms.
Let

p(x) = xn + a1x
n−1 + . . .+ an−1x+ an ∈ K[x].

Recall that to put p into an (n− r)-parameter form it suffices to determine
values of b0, . . . , bn−1 ∈ B such that applying the Tschirnhaus transformation

T (x) = b0 + b1x+ . . .+ bn−1x
n−1
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to p yields a transformed polynomial

q(y) = yn + A1y
n−1 + . . .+ An

with A1 = . . . = Ar = 0. Each Ai is a homogeneous degree i polynomial in
K[b0, . . . , bn−1], so determines a degree i hypersurface in Pn−1

A
. We can then

ask about special points on the intersection of these hypersurfaces.
For example, given hypersurfaces V1, · · · , Vr in Pn−1

K
with deg(Vi) = i, is

there a function F (r) such that if n ≥ F (r) the intersection

X = V1 ∩ . . . Vr

is always guaranteed to contain a solvable point? A point of weight at most
r? A point of resolvent degree at most n− r?

More generally, given a collection of hypersurfaces in Pn−1
K

, are there lower
bounds for n which depend only on the degrees of the hypersurfaces, such
that their intersection is guaranteed to contain (respectively) a solvable point,
a point of weight at most r, and a point of resolvent degree at most n − r?
Each of these questions has been answered in the affirmative.

The first result of this kind is due to Hamilton, who showed that it was
always possible to determine a point on the intersection of

V1 ∩ . . . ∩ Vr

by successively solving polynomial equations of degree at most r, provided
the ambient dimension is sufficiently large; a point obtained via this method
is necessarily defined over an extension of weight at most r. [8]

Hamilton’s work was built upon and refined by Sylvester, who improved
Hamilton’s bounds and introduced a relatively straighforward computational
method for determining the necessary dimension n− 1 in terms of r, known
as the “method of obliteration”.[18] Moreover, the method of obliteration can
be applied to any system of homogeneous polynomials (of degree at most r)
to produce a point of weight r in the solution set of that system.

In 1945, Brauer showed that it was possible to produce a solvable point
in the solution set of any system of homogeneous polynomials, provided the
ambient dimension was larger than some bound which depends only on the
degrees of the polynomials.[1] In particular, for any r, it is possible to de-
termine solvably a Tschirnhaus transformation reducing an arbitrary degree
n polynomial to (n− r)-parameter form, provided n is sufficiently large rel-
ative to r. Brauer’s work does not compute these bounds explicitly, only
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proves that they exist. Recent work of Wooley sharpens Brauer’s result to
the following theorem.[22]

Theorem 1 (Wooley). Let X ⊆ Pn be a complete intersection of hypersur-
faces defined over a field K of characteristic zero. Then X possesses a point
defined over a solvable extension L of K with, moreover, wt(L/K) ≤ deg(X),
provided only that

dim(X) ≥ 22deg(X)

.

Thus, a Tschirnhaus transformation reducing a degree n polynomial to
an (n − r)-parameter form can always be found solvably provided that n ≥
22r! + r + 1.

In a subsequent paper, Brauer showed that the intersection

V1 ∩ . . . Vr ∈ Pn−1
K

contains a point defined over an extension L of K with RD(L/K) ≤ n − r
provided that n ≥ r!.[2] This implies that

RD(n) ≤ n− r

for n ≥ r!.
These remained the best general bound on RD(n) until the problem was

revisited in work of Farb and Wolfson, who recast the theory of resolvent de-
gree in geometric terms.[6] Brauer’s bounds were improved upon significantly
by work of Wolfson, with further refinements given by Sutherland.[21, 16]

In fact, the early work of Hamilton and Sylvester – while most naturally
applicable to the context of bounded weight extensions – can be applied to the
problem of bounding RD(n) using Tschirnhaus transformations. In section
8.2, we show that for several values of n this produces sharper bounds on
RD(n) than any previously published. In the next few sections, we explore
the method of obliteration and its applications in significant detail.

7 Points of Bounded Weight on Intersections

of Quadrics

Let A be a field of characteristic zero, and let K be an extension of A. As we
have seen, a number of problems in the theory of Tschirnhaus transforma-
tions can be reduced to finding special points (or special linear subspaces) on
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intersections of certain projective hypersurfaces. In this section we consider
the problem of finding points of bounded weight (that is, points defined of
a tower of bounded-degree extensions of K) on the intersection of several
quadric hypersurfaces in PN

K
when N is large relative to the number of hy-

persurfaces. This leads to the introduction of a special case of Sylvester’s
method of obliteration. In the following section, the method of obliteration
is developed for an arbitrary collection of hypersurfaces.

Let Q1, . . . , Qr be quadric hypersurfaces in PN
K , with r ≤ N . The inter-

section V = Q1 ∩ . . . ∩ Qr may contain no K-points but contains points in
some finite extension of K. For example, if r = N , there are in general 2r

points of intersection (over K) which are governed by an equation of degree
2r, so V contains points defined over a degree 2r extension of K.

When N is large relative to r, there will in general be infinitely many
points of intersection, and it becomes possible to determine such a point by
solving equations of lower degree. For example, we shall see that for suffi-
ciently large N , it is possible to determine a point of intersection of r quadrics
by solving only equations of degree 2; the resulting point is defined over a
field L which can be obtained from a finite tower of quadratic extensions of
K. Note that the total degree of the extension L/K is not necessarily less
than 2r in this case, but nonetheless in some sense the complexity of the
extension has been reduced. This is captured by the notion of weight of a
field extension. For convenience, we recall the definition here:

Definition 7.1. A finite extension L/K is of weight d if d is the minimal
value such that L/K factors as a tower of extensions each of degree at most
d.

We will say a point is of weight d if it is defined over a weight d extension
of K. We now considering the following problem.

Problem 3. Determine a function F (r, d) such that, for any N ≥ F (r, d),
and any quadric hypersurfaces Q1, . . . , Qr in PN

K
defined over K, the inter-

section V = Q1 ∩ . . . ∩Qr contains a point of weight d.

In investigating this question the following classical lemma will be useful.

Lemma 4 (Linear Subspaces of Quadric Hypersurfaces). For any k ∈ N, a
quadric hypersurface Q ⊂ PN

K
defined over K contains a k-plane defined over

a weight 2 extension of K provided that N ≥ 2k + 1.
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Proof. We may assume Q is the vanishing locus of a diagonal quadratic form

F (x0, . . . , xn) =
n∑

i=0

(−1)icix
2
i

Over a suitable solvable extension L of K, we can factor each pair of terms
cix

2
i − ci+1x

2
i+1 as (

√
cixi +

√
ci+1xi+1)(

√
cixi −

√
ci+1xi+1).

If n is even, the system

c0 = 0
√
c1x1 +

√
c2x2 = 0

√
c3x3 +

√
c4x4 = 0

...
√
cn−1xn−1 +

√
cnxn = 0

defines a hyperplane over L and contained in Q, of dimension n− n/2− 1 =
n/2− 1.

Otherwise, if n is odd, then

√
c0x1 +

√
c1x1 = 0

√
c2x2 +

√
c3x3 = 0

...
√
cn−1xn−1 +

√
cnxn = 0

defines a hyperplane over B and contained in Q of dimension n − n/2 =
n/2.

We now consider the special case of d = 2 in more detail. Returning to
our problem, for r = 1, it is clear F (1, 2) = 1; this just says any quadric
hypersurface in P1

K contains a point defined over a quadratic extension of
K. For r = 2, we have F (2, 2) ≥ 3; if N = 1, the expected number of
points of intersection (even over K) is zero, and for N = 2 we expect 4
points of intersection governed by an equation of degree 4. By the lemma,
in fact F (2, 2) = 3: any quadric Q1 ∈ P3

K
contains a line defined over a

quadratic extension of K, and the intersection of this line with the quadric
Q2 is governed by another degree 2 equation, so that a point of intersection
can be determined after taking two successive quadratic extensions of K.
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For larger r, one strategy is to proceed inductively: first determine m such
that for any field L, Q1 ∩ . . . ∩ Qr−1 ⊂ Pm

K
is guaranteed to contain a point

defined over a weight two extension of L, then using the lemma determine N
such that Qr ⊂ PN

K
contains an m-plane defined over a quadratic extension

L of K. In his paper on Tschirnhaus transformations, B. Segre pursues this
strategy. [15] This leads to the following lemma:

Lemma 5 (Segre). Given r quadric hypersurfaces Q1, . . . , Qr in PN
K

, a point
of Q1 ∩ . . . ∩ Qr can be determined by solving equations of degree at most 2
provided N ≥ 2r − 1.

Equivalently, Q1 ∩ . . . ∩ Qr contains a point defined over a field L with
wt(L/K) ≤ 2.

Thus F (r, 2) ≤ 2r − 1.

This bound on F (r, 2) is not sharp; in fact, the strategy described above is
highly inefficient. In the next section we use methods of Sylvester to produce
a bound for F (r, 2) which is quadratic in r. As a historical aside: though
Sylvester’s work on Tschirnhaus transformations predates Segre’s by several
decades, Segre’s bound of n ≥ 157 for the removal of 6 terms from a degree n
equation is considerably worse than Sylvester’s bound of n ≥ 45 for the same
problem; this is largely due to the inefficiency of Segre’s method for dealing
with quadrics. (It seems that Segre was not aware of Sylvester’s work on the
problem.)

7.1 Weight 2 Points of Quadrics and Sylvester’s Method
of Obliteration

Sylvester, in his 1886 paper on Tschirnhaus transformations, considered the
problem of finding solutions of bounded weight to systems of a given type
(i.e., with a given number of equations of each degree). A complete descrip-
tion of Sylvester’s method of obliteration is given in section 8; here we restrict
attention to the special case of systems in which all equations are degree at
most 2.

In the previous section our strategy for dealing with r quadrics was to
find a hyperplane inside one of the quadrics of sufficiently high dimension
that the remaining r − 1 quadrics could be dealt with inside of it. This
allows the number of quadrics to be reduced by one, so that a bound on
F (r, 2) can be computed inductively; we have seen that the resulting bound
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is exponential in r. A better strategy, due to Sylvester, is to find a line
(defined over a field extension of weight 2) contained in r−1 of the quadrics,
then intersect this line with the remaining quadric to determine a point of
weight 2. This strategy leads to the following proposition, a special case of
Sylvester’s formula of obliteration.

Proposition 13 (Sylvester). F (r, 2) ≤ F (r − 1, 2) + r.

Proof. By the preceding discussion, F (r, 2) is bounded above by the ambient
dimension N necessary so that a line can be determined on the intersection
of r − 1 quadrics in PN

K over a weight 2 extension of K. The idea will be to
reduce this problem to finding a weight 2 point of some larger system.

To that end, let f1, . . . , fr−1 be the homogeneous polynomials defining
the r− 1 quadric hypersurfaces. Provided that N ≥ F (r− 1, 2), we can find
a weight 2 point Q satisfying f1(Q) = . . . = fr−1(Q) = 0. We now seek a
point X = (x1, . . . , xN) such that X + λQ is also a solution to f1, . . . , fr−1
for all λ; this will give the desired line.

For each i, we can expand fi(X + λQ) as a polynomial in λ; we require
that this polynomial vanish identically. In particular, the linear and constant
coefficients of the λ-polynomial must vanish, and these are (respectively)
degree 1 and degree 2 homogeneous polynomials in terms of x1, . . . , xN .

Repeating this process for all i = 1, . . . , r − 1 yields a system of r − 1
quadrics and r − 1 linear equations. Further, we need to ensure that the
point X is distinct from Q; to do this, we simply choose any hyperplane
PN−1
K disjoint from {Q}, which amounts to imposing one additional linear

constraint.
Thus to find a line in the intersection of r−1 quadrics, defined over a field

extension of weight 2, it suffices to find a weight 2 point in the intersection of
r− 1 quadrics and r linear equations. It follows that F (r, 2) ≤ F (r− 1, 2) +
r.

Corollary 1. F (r, 2) ≤ r(r+1)
2

.

Proof. Applying the proposition r − 1 times, we have

F (r, 2) ≤ F (1, 2) + 2 + 3 + . . .+ r.

But F (1, 2) = 1, so

F (r, 2) = 1 + 2 + . . .+ r =
r(r + 1)

2
.
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7.2 Points of Weight d on the Intersection of r Quadrics

In the previous section we showed that F (r, 2) ≤ r(r + 1)/2. That is, given
quadrics Q1, . . . , Qr in PN

K
, we can find a point of weight 2 in the intersection

V = Q1 ∩ . . . ∩ Qr provided that that ambient dimension N is at least
r(r + 1)/2. At the other extreme, we have F (r, d) = r for d ≥ 2r; in this
case, it suffices to take a single degree 2r extension of K to determine a weight
2r point. We now turn our attention to the intermediate case 2 < d < 2r.

For d = 2 it was necessary to disentangle the r quadrics one at a time,
producing a system of dependent but not simultaneous equations. For d = 2r,
we are free to dispatch with the entire simultaneous system in one stroke.
With an intermediate bound on weight, we can deal with a subset of the
quadrics simultaneously; for example, if d = 4, and we wish to find a weight
d point on the intersection of r quadrics, we could first find a line on r − 1
of the quadrics, and intersect this line with the remaining quadric; or we
could find a plane on r − 2 of the quadrics, and intersect the two remaining
quadrics with this plane (which may require a degree 4 extension). For d = 8,
we could look for a 3-plane on r−3 of the quadrics, dealing with the remaining
3 simultaneously within that 3-plane, and so on.

To help keep track of all these possibilities, we introduce some new nota-
tion.

Definition 7.2. Let F (r, d, k) denote the minimal ambient dimensionN such
that it is always possible to find a k-plane on the intersection of r quadrics
in PN

K
, defined over a weight d extension L of K.

Thus for example F (r, d, 0) = F (r, d) (a 0-plane is just a point), and
in the proof of Sylvester’s bound on F (r, d) we used the rule F (r, 2, 0) ≤
F (r − 1, 2, 1). More generally, for any s such that 2s ≤ d, we have the rule

F (r, d, 0) ≤ F (r − s, d, s).

That is, to determine a weight d point on the intersection of r quadrics,
it suffices to find an s-plane of weight d inside r − s of the quadrics, then
intersect with the remaining s quadrics.

In order to use these rules to produce bounds on F (r, d, 0), we need
additional rules of the form F (r, d, s) ≤ F (r′, d, 0) + c. That is, we need
to describe how to find s-planes of weight d by solving for weight d point
solutions of some related system.
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Lemma 6. To determine an s-plane of weight d in the intersection of r
quadrics it suffices to determine a point solution of weight d to a system of
r quadrics and s(r + 1) linear equations. Thus

F (r, d, s) ≤ F (r, d, 0) + s(r + 1).

Proof. Let Q1, . . . , Qr be quadric hypersurfaces in PN
K

, with each Qi the
vanishing locus of a degree 2 homogeneous polynomial fi. We first find an
s−1-plane of weight d contained in the intersection of r quadrics; this requires
the ambient dimension to be at least F (r, d, s− 1). Let P1, . . . , Ps be points
which span this plane in the sense that any point in the plane can be written
as λ1P1+. . . λsPs for some λ1, . . . , λs. Then to determine an s-plane of weight
d we need to find a point X = (x0, . . . , xN) of weight d such that

fi(X + λ1P1 + . . .+ λsPs) = 0

for all i and all λ1, . . . , λs. Expanding this expression as a polynomial in
the λj’s, we require the coefficient of each term to vanish. The vanishing of
the coefficients λ1, . . . , λs imposes s linear conditions on x1, . . . , xN , for each
quadric Qi. Since there are a total of r quadrics this leads to s · r linear
equations. The vanishing of the constant coefficient is just the requirement
that fi(P ) = 0, so the system to be satisfied contains s · r linear equations
together with the r quadratic equations with which we started. Further, for
X,P1, . . . , Ps to span an s-plane, we must ensure that X does not lie in the
(s − 1)-plane spanned by P1, . . . , Ps; we do this by imposing s additional
linear conditions on X defining a complementary hyperplane.

Thus in total we require a point solution to a system with r quadrics, and
sr+ s = s(r+ 1) linear equations. The minimal ambient dimension required
to guarantee a weight d solution to such a system exists is F (r, d, 0)+s(r+1),
so

F (r, d, s) ≤ F (r, d, 0) + s(r + 1).

We now have two systems of rules,

F (r, d, 0) ≤ F (r − s, d, s) (if d ≥ 2s)

and
F (r, d, s) ≤ F (r, d, 0) + s(r + 1)
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which we can apply inductively to produce bounds on F (r, d, 0). However,
it is not immediately clear which sequence of rule applications will produce
the optimal bound. For example, if r = 10 and d = 8, we can separate up to
3 quadrics at a time. We could separate 3, then 3, then 3, then 1 quadrics at
a time; or we could separate 3, then 3, then 2, then 2; or 2, 2, 2, 2, 2; and so
on. What is the optimal sequence of segregations? An intuitively plausible
guess is that it is always optimal to separate as many quadrics as possible
(i.e., as permitted by the weight bound d) at each step. In the following
section we prove that this guess is correct.

7.3 Optimal Sylvester Obliteration for Quadrics

Suppose we have a system of r quadrics in PN
K

. We wish to determine
F (r, d, 0) – that is, the minimal ambient dimension N such that our sys-
tem is guaranteed to contain a point of weight d. We consider strategies
involving successive applications of the obliteration formulae

F (r, d, 0) ≤ F (r − s, d, s) (if d ≥ 2s)

F (r, d, s) ≤ F (r, d, 0) + s(r + 1)

to separate s quadrics at a time until we have reduced to a system of only
linear equations. Such a strategy is specified by a choice of tuple

(s1, . . . , sr)

with 0 ≤ si ≤ r and 2s
i ≤ d for all i and

r =
r∑

i=1

si.

In words, si is the number of quadrics to be separated in step i; if si = 0 we
do nothing for that step. Requiring the si to sum to r ensures that we have
reduced the problem to solving a purely linear system.

Example 2. Let r = 10, d = 8. Then we can separate up to 3 quadrics
in each step. We consider the strategies (3, 3, 3, 1) and (3, 3, 2, 2). The first

43



strategy corresponds to the following sequence of rule applications

F (10, 8, 0) ≤ F (7, 8, 3) ≤ F (7, 8, 0) + 3 · (7 + 1) = F (7, 8, 0) + 24

≤ F (4, 8, 3) + 24 ≤ F (4, 8, 0) + 24 + 3 · (4 + 1) = F (4, 8, 0) + 39

≤ F (1, 8, 3) + 39 ≤ F (1, 8, 0) + 39 + 3 · (1 + 1) = F (1, 8, 0) + 45

≤ F (0, 8, 1) + 45

= 54

which produces the bound F (10, 8, 0) ≤ 54. The second corresponds to the
sequence

F (10, 8, 0) ≤ F (7, 8, 3) ≤ F (7, 8, 0) + 3 · (7 + 1) = F (7, 8, 0) + 24

≤ F (4, 8, 3) + 24 ≤ F (4, 8, 0) + 24 + 3 · (4 + 1) = F (4, 8, 0) + 39

≤ F (2, 8, 2) + 39 ≤ F (2, 8, 0) + 39 + 2 · (2 + 1) = F (2, 8, 0) + 45

≤ F (0, 8, 2) + 45

= 55

which produces the bound F (10, 8, 0) ≤ 55.

Given a tuple (s1, . . . , sr) we can compute the number of linear equations
generated by the strategy it represents, then minimize this number over all
tuples subject to our given constraints.

Proposition 14. For producing bounds on F (r, d, 0) using the obliteration
formulae

F (r, d, 0) ≤ F (r − s, d, s) (if d ≥ 2s)

F (r, d, s) ≤ F (r, d, 0) + s(r + 1)

to separate s quadrics at a time, a sequence (s1, . . . , sn) is optimal if it max-
imizes

r∑
i=1

s2i

subject to the constraints si ∈ {0, 1, . . . , r}, 2si ≤ d, and
∑r

i=1 si = r.

Proof. If we separate s1 quadrics in our first application of the obliteration
formulae, we obtain

F (r, d, 0) ≤ F (r − s1, d, s1) ≤ F (r − s1, d, 0) + s1(r − s1 + 1).
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In other words, we reduce the number of quadrics by s1 at the expense of
increasing the number of linear terms by s1(r− s1 + 1). We can rewrite this
latter expression as

s1 + s1 ·

(∑
i>1

si

)
.

Similarly, after the first k − 1 separations, the number of remaining
quadrics is r − s1 − . . .− sk−1 = sk + . . .+ sr. Then since

F (sk + . . .+ sr, d, 0) ≤ F (sk+1 + . . . sr, d, sk)

≤ F (sk+1 + . . .+ sr, d, 0) + sk + sk(sk+1 + . . .+ sr),

the number of new linear terms introduced when we separate sk quadrics in
step k is

sk + sk

(∑
i>k

si

)
.

Thus, after all quadrics have been separated, the number of linear equations
in the system will be

r∑
k=1

sk +
r∑

k=1

sk

(∑
i>k

si

)
= N +

∑
k<i

sksi

= N +
(
∑r

i=1 si)
2 −

∑r
i=1 s

2
i

2

= N +
N2 −

∑r
i=1 s

2
i

2
.

Thus, the number of linear equations in the reduced system – and hence
the bound we obtain on F (r, d, 0) is minimized when the quantity

∑r
i=1 s

2
i is

maximized.

Equivalently, an optimal sequence (s1, . . . , sn) is one which maximizes
distance from the origin when (s1, . . . , sn) is interpreted as a point of Rn.
Then

∑r
i=1 si = r determines a simplex and we can observe that this distance

is maximized at the vertices of the simplex; that is, when all but one of the
si are zero. In general the vertex points will not satisfy 2si ≤ d; the optimal
sequence(s) will be those which are as close as possible to vertex points
without violating this constraint. This leads to a simple rule for optimizing
sequences of separations: at each step, separate as many quadrics as possible,
subject to the constraint 2si ≤ d.
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7.4 Limitations of Sylvester’s Method of Obliteration

We have seen that Sylvester’s obliteration formulae can be leveraged to pro-
duce bounds on F (r, d, 0), and determined the optimal strategy for applying
these formulae. A natural next question is whether these bounds are sharp.
In general the answer is no, as the next example shows.

Example 3. Let r = 3 and d = 5. What is F (3, 5, 0)? That is, what
is the minimal ambient dimension N such that the intersection of any three
quadrics Q1, Q2, Q3 in PN

K is guaranteed to contain at least one point of weight
at most 5?

Applying the obliteration formulae, we obtain

F (3, 5, 0) ≤ F (1, 5, 2)

≤ F (1, 5, 0) + 2 · (2)

= F (1, 5, 0) + 4 = 5.

This is optimal in the sense of Proposition 14; there is no way to obtain a
sharper bound using only the rules F (r, d, 0) ≤ F (r− s, d, s) and F (r, d, s) ≤
F (r, d, 0) + s(r + 1).

On the other hand, we can obtain a sharper bound by using certain special
facts about the geometry of quadrics and their intersections. It is a classical
result that the intersection of any 2 quadrics in P4

K
contains 16 lines; Segre

has shown that these lines are defined over a weight 5 extension of the base
field K.[15] Thus, given three quadrics, in P4, we can determine a line of
weight 5 lying inside two of them, then intersect this line with the remaining
quadric to determine a weight 5 point. Thus F (3, 5, 0) ≤ 4.

Recall that in determining a line on the intersection V = Q1 ∩ . . . Qr

of r quadrics, the basis of Sylvester’s method was to find a point P of V ,
then determine a point X such that X + λP is in V for all λ. For this to
succeed, we require not only that V contain a line, but that it contain a
line through the (arbitrary) point X we chose. Thus when there are only
finitely many lines to be found, the method will not succeed. In particular,
Segre’s observation that the 16 lines in the intersection of two quadrics in P4

are of weight 5 cannot be derived from the obliteration formula. Analogous
considerations apply to the problem of determining k-planes in intersections
of quadrics (or in intersections of higher degree hypersurfaces).
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8 Sylvester’s Obliteration Algorithm

We now give a description of the obliteration algorithm in general. Though
motivated by the problem of finding Tschirnhaus transformations, the proce-
dure Sylvester describes in [18] is remarkably general, allowing for a solution
of bounded weight to be found to any system of homogeneous polynomials,
provided only that the number of variables is greater than some bound which
depends only on the degrees of the polynomials.

It will be convenient to first establish some new notation.

Definition 8.1. A system S of homogeneous polynomials in K[x0, . . . , xn−1]
is of type [

nd, nd−1, . . . n2, n1

]
if it contains exactly ni equations of degree i for each i = 1, . . . , d, and no
equations of degree d+ 1 or higher.

Sylvester shows that such a system S of homogneous polynomial equa-
tions in n variables of degree at most d, there is some bound N which depends
only on the type of S such that if n > N , then S has a solution defined over
a weight k extension of K.

For determining points of weight 2 on intersections of quadrics, a useful
trick was to separate (at least) one of the quadrics from S, then find a line
contained in the solution set of the remaining quadrics. The determination
of such a line required the solution of a system S ′ which, while perhaps
containing more equations than S, contains one fewer equation of the highest
degree. Generalizing this trick to an arbitrary system S yields the following
proposition.

Proposition 15 (Sylvester’s First-Order Formula of Obliteration). Given
n1, . . . , nk ∈ N with nk > 0, let

[[nk, nk−1, . . . , n2, n1]]

denote the minimum n such that, for any system S of type [nk, . . . , n1], the
variety V (S) ⊂ Pn−1 contains a point defined over an extension L of K of
weight at most k.

Then

[[nk, nk−1, . . . , n2, n1]] ≤ [[mk,mk−1, . . . ,m2,m1 + 1]]
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where

mi =

{(∑k
j=i nj

)
− 1 i 6= k

nk − 1 i = k.

Proof. Let S be a system of equations with the given number of equations
of the given degrees. Pick any f of maximal degree k from the system S.

We can find a solution to S by first finding a line L contained in the
solution set of the subsystem S ′ = S \ {f}, then intersecting this line with
the vanishing locus of f . To find L, first find a solution P = (q0, . . . , qN) to
S ′. Then to get the required line it suffices to find a point X = (x0, . . . , xN)
such that X + λP is a solution to S ′ for all λ.

For any equation g ∈ S ′, then, view g(X + λP ) as a polynomial in λ;
if deg(g) = d, the coefficients of 1, λ, . . . , λd−1, λd must vanish identically.
In fact the coefficient of λd is just g(P ), so vanishes since we chose P to
be a solution of S ′. The vanishing of the remaining coefficients imposes
polynomial conditions on the x0, . . . , xN of degrees 1, 2, . . . , d.

Ranging over all g ∈ S ′, we have that X must be a solution to a system
S ′′ with mi equations of degree i, where

mk = nk − 1

mk−1 = nk + nk−1 − 1

mk−2 = nk + nk−1 + nk−2 − 1

...

m1 = nk + nk−1 + . . .+ n1 − 1.

Finally, we require that X not be simply a multiple of P (in which case
X+λP does not describe a line). This can be done by imposing an arbitrary
linear condition which P does not satisfy, so that the number of equations
of degree 1 increases by one.

We call this reduction formula the first-order formula of obliteration – it
is first-order in the sense that we consider here only separating one equation
at a time. For determining solutions of weight at most k this appears to
be optimal, but for less restrictive bounds on weight we can consider other
obliteration formulae involving the determination of higher-dimensional lin-
ear subspaces.
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Note that applying this formula nk times yields a system with no equa-
tions of degree k, so all equations of the highest degree can be removed. This
can be repeated until only (a large number of) linear equations remain, in
which case the minimum number of variables needed is easy to determine.

For example, we can use this obliteration formula to recover Bring’s result
for removing three terms from a degree n polynomial for n ≥ 5.[4] Recall that
to determine a Tschirnhaus transformation which accomplishes this it suffices
to determine a point on the intersection

V1 ∩ V2 ∩ V3 ⊂ Pn−1

of three hypersurfaces with deg(Vi) = i. Thus, in Sylvester’s notation, one
requires n ≥ [1, 1, 1]. Using the formula of obliteration, we have

[1, 1, 1] ≤ [0, 1, 3]

≤ [0, 0, 4].

Thus to find a point of weight at most 3 on V1 ∩ V2 ∩ V3 it suffices to find a
point of weight at most 3 on the intersection of 4 hyperplanes in Pn−1. This
is always possible provided n− 1 ≥ 4.

8.1 Higher-Order Obliteration

As Sylvester himself observed, the bounds obtained by the first-order oblit-
eration formula can often be improved.

For example, using the obliteration calculation

[1, 1, 1, 1] ≤ [0, 1, 2, 4]

≤ [0, 0, 2, 7]

≤ [0, 0, 1, 9]

≤ [0, 0, 0, 10] = 11

recovering the Hamilton/Jerrard bound n ≤ 11 for the removal of 4 terms
which we discussed in section 5.1. But in fact, as Hamilton himself observed,
n ≥ 10 suffices. [8]

We can prove this as follows: from [1, 1, 1, 1] ≤ [0, 0, 2, 7] we see that it
suffices to determine a point of weight 4 on the intersection of 7 hyperplanes
and 2 quadric hypersurfaces in Pn−1. This is possible when n ≥ 10. In
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this case, we can always find a 2-plane contained in the 7 hyperplanes; the
intersection of the 2 quadrics with this 2-plane is a pair of conics, whose
intersection can be computed via an equation of degree 4.

The sharpening is possible because the obliteration formula of proposi-
tion 15 involves the separation of only one equation of highest degree at a
time from the given system (and subsequently the determination of a one-
dimensional linear subspace of the vanishing locus of the remaining sub-
system). By instead separating the two quadrics simultaneously (and then
finding a two-dimensional linear subspace of the remaining subsystem) the
dimension required is reduced by one.

More generally, one can consider separating s equations of highest degree
k from a given system, then finding an s-plane contained in the remaining
subsystem. Sylvester derived obliteration formulae for this more general
technique uses them to sharpen Hamilton’s bounds for the removal of r terms
from a degree n by means of a Tschirnhaus transformation of weight at most
r.

We now turn to stating and proving the more general formulae of oblit-
eration which we will need. The ideas are due to Sylvester, though he does
not produce explicit formulae for this version of the method.

Definition 8.2. Let

D
(
d, r,

[
nk, nk−1, . . . n2, n1

])
denote the minimum n such that, given any system S of type[

nk, nk−1, . . . n2, n1

]
of homogeneous polynomials in K[x1, . . . , xn], there exists an r-plane (or
a point, if r = 0) contained in V (S) ⊂ Pn−1 defined over a field L with
wt(L/K) ≤ d.

Now consider separating s equations of highest degree from a system S.
If an s-plane can be found contained in the vanishing locus of the remaining
subsystem, then a point of V (S) can be found by intersecting the s separated
equations with this s-plane; this intersection is guaranteed to contain a point
of weight at most ks. This yields the following formula.

Proposition 16. Sylvester Obliteration Suppose s < nk and d ≥ ks. Then

D
(
d, 0,

[
nk, nk−1, . . . n2, n1

])
≤ D

(
d, s,

[
nk − s, nk−1, . . . n2, n1

])
50



The hypothesis s < nk is inessential; the same logic allows for the sep-
aration of s equations of any degree provided the product of the degrees of
the separated subsystem is at most d. Thus, if s > nk but s < nk + nk−1,
one can separate all nk equations of degree k together with s− nk equations
of degree k − 1. If nk + nk−1 + nk−2 < s < nk + nk−1, one can separate all
equations of degree k and k−1 together with some equations of degree k−2,
and so on. It is easy to make the necessary adjustments to the formula in
these cases.

To apply the obliteration process iteratively, we need an additional for-
mula to reduce the problem of finding an s-plane in the solution set of a given
system to finding a point solution to some auxiliary system (with a larger
number of equations).

Proposition 17. Sylvester Obliteration

D
(
d, s,

[
nk, nk−1, . . . n2, n1

])
≤ D

(
d, 0,

[
mk, mk−1, . . . m2, m1 + s

])
where

mi =
∑
j≥i

nj

(
s+ j − i− 1

j − i

)
.

Proof. We proceed by induction on the dimension s of the plane to be found.
The base case s = 1 has already been dealt with in the proof of the first-order
obliteration formula.

Now let Let S a system of polynomial equations in n variables of type
[nk, nk−1, . . . , n2, n1] and suppose that the result has been established for
s − 1. To simplify notation let G(s) denote the quantity on the right-hand
side of the inequality to be proven.

Our strategy to find an s-plane contained in V (S) is as follows: first find
find an (s − 1)-plane of contained in V (S) and defined over an extension
L/K with wt(L/K) ≤ d. By the inductive hypothesis, this is possible when
n ≥ G(s−1). Next we show that given such an (s−1)-plane we can determine
an s-plane in V (S) defined over an extension L′/L with wt(L′/L) ≤ d (and
hence wt(L′/K) ≤ d) provided that n ≥ G(s). Thus to determine an s-plane
requires

n ≥ maxG(s), G(s− 1) = G(s).

The equality maxG(s), G(s− 1) holds because∑
j≥i

nj

(
s+ j − i
j − i

)
>
∑
j≥i

nj

(
s− 1 + j − i

j − i

)
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for all i, j and s and this implies G(s) ≥ G(s− 1).
Suppose then that V (S) contains an (s − 1)-plane spanned by points

Q1, . . . , Qs ∈ Pn−1
L . To determine an s-plane given this data it suffices to find

a point X = (x1 : . . . : xn) such that the expression

f(X + λ1Q1 + . . .+ λsQs) = 0

vanishes for any polynomial f ∈ S and any λ1, . . . , λs ∈ L.
Consider now the expansion of f(X + λ1Q1 + . . . + λsQs) as a poly-

nomial in λ1, . . . , λs−1. Suppose deg(f) = j. The degree j component
of this polynomial is simply f(λ1Q1 + . . . + λsQs−1), which vanishes since
λ1Q1 + . . . + λsQs is contained in V (S) ⊆ V (f) by assumption. For the ex-
pression (X+λ1Q1 + . . .+λsQs) to vanish for all λ1, . . . , λs, then, we require
that for all i > 0 and all (e1, . . . , es) ∈ Ns such that e1 + . . .+ es = j − i, the
coefficient of the monomial

λe11 · · ·λess
must be zero. This coefficient will be a homogeneous degree i polynomial in
x1, . . . , xn.

The number of monomials in λ1, . . . , λs of total degree j − i is given by(
s+ j − i− 1

j − i

)
so the requirement f(X+λ1Q1+. . .+λsQs) = 0 imposes

(
s+j−i
j−i

)
homogeneous

degree i polynomial conditions on x1, . . . , xn.
There are nj polynomials of degree j in S, so collectively these contribute

nj

(
s+ j − i
j − i

)
degree i polynomials.

Now summing over all j ≥ i, the number of degree i polynomials which
(x1, . . . , xn) must satisfy is given by∑

j≥i

nj

(
s+ j − i
j − i

)
.

Finally, we must ensure X is not itself a point of the (s − 1)-plane
spanned by Q1, . . . , Qs−1. We do this by choosing a complementary hyper-
plane Pn−1−s, which amounts to imposing an additional s linear conditions
on x1, . . . , xn.
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Thus given an (s− 1)-plane of weight d contained in V (S), to determine
an s-plane of weight d contained in V (S) it suffices to determine a point
solution X to a system S ′ of type

[mk mk−1 . . . m2 m1 + s]

where

mi =
∑
j≥i

nj

(
s+ j − i− 1

j − i

)
.

The ambient dimension required to do this is therefore given by

G(s) = D
(
d, 0,

[
mk mk−1 . . . m2 m1 + s

])
.

This completes the proof.

Applying these obliteration formulae iteratively, one can reduce the type
of the given system until only equations of degree 1 remain, in which case
the value of the function D can be computed easily.

8.2 Bounds on Resolvent Degree from Sylvester’s Method

Sylvester’s obliteration formulae are most naturally understood in terms of
finding solutions of bounded weight to a given system, but can also be used
to prove statements about resolvent degree.

For example, Sylvester uses the obliteration formulae to prove that on
the intersection of

V1 . . . ∩ . . . V5 ⊂ Pn−1
K

with deg(Vi) = i, there is always a point defined over an extension L of
K with wt(L/K) ≤ 5 provided that n ≥ 41. Thus there is a Tschirnhaus
transformation defined over L removing the first 5 intermediate terms from
any degree n polynomial inK[x]. By lemma 2, we have RD(L/K) ≤ RD(5) =
1. By lemma 3, this implies

RD(n) ≤ max{n− 6,RD(n− 1)}

for n ≥ 41. Since Hilbert’s argument establishes RD(n−1) ≤ n−1−5 = n−6
for n− 1 ≥ 9, this implies

RD(n) ≤ n− 6 for n ≥ 41.
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Observe, however, that wt(L/K) ≤ 5 is much stricter than required for
this argument; all that we require is that RD(L/K) ≤ n − 6, and this will
hold provided wt(L/K) ≤ d and RD(d) ≤ n− 6.

Raising the allowable weight allows for more terms to be separated in
each step of Sylvester’s obliteration algorithm, and this makes the algorithm
potentially more efficient. Thus, for example, RD(n) ≤ n− 6 for n ≥ 21 can
be proven using Sylvester’s obliteration algorithm with an appropriate choice
of maximum weight. This resolvent degree bound was first conjectured by
Wiman and Chebotarev and rigorously proved independently by Sutherland
in 2021.[16, 20, 16] The application of the obliteration algorithm to derive
this specific bound is described in [11].

The following proposition gives the relationship between the obliteration
formulae and bounds on resolvent degree more precisely.

Proposition 18 (Obtaining Bounds on Resolvent Degree). Suppose that

D

d, 0, [1 1 . . . 1 1
]︸ ︷︷ ︸

k − 1 times

 ≤ n

and RD(d) < n− k. Then

RD(n) ≤ max{n− k,RD(n− 1)}.

Proof. By lemma 3, it suffices to show that for any degree n polynomial

p(x) = xn + a1x
n−1 + . . .+ an−1x+ an ∈ K[x]

there is a Tschirnhaus transformation

T (x) = b0 + b1x+ . . .+ bn−1x
n−1

defined over an extension L/K such that that transformed polynomial has
the form

q(y) = yn + Aky
n−k + . . .+ An−1y + An

and such that RD(L/K) ≤ n− k.
Such a transformation is given by an L-point on the intersection of the

Tschirnhaus hypersurfaces

V (A1) ∩ . . . ∩ V (Ak−1) ⊂ Pn−1
K

.
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The system {A1, . . . , Ak−1} has type[
1, 1, . . . 1, 1

]︸ ︷︷ ︸
k − 1 times

,

so since

D

d, 0, [1, 1, . . . 1, 1
]︸ ︷︷ ︸

k − 1 times

 ≤ n

there is an L-point of V (A1) ∩ . . . ∩ V (Ak−1) with wt(L/K) ≤ d.
Now by lemma 2, RD(L/K) ≤ RD(d), and so RD(L/K) ≤ n − k, by

hypothesis.

In Appendix A, Python code is given which uses this proposition to
compute, for r = 6, . . . , 17, upper bounds B(r) on the degree n such that
RD(n) ≤ n − r. Results are shown in the table below. This method im-
proves on the previous best-known bounds B′(r) for r = 7, 8, 11, 12, and 13,
and matches the best-known bounds for other r ≥ 6. For 6 ≤ r ≤ 12 the
previous bounds B′(r) are from [17]. For 13 ≤ r ≤ 17 they are from [10].

Table 1: Bounds on Resolvent Degree
r B(r) Best Previous Bound B’(r)
6 21 21
7 76 109
8 211 325
9 1,681 1,681
10 15,121 15,121
11 59,050 151,201
12 332,641 1,663,201
13 3,991,681 5,250,199
14 51,891,841 51,891,841
15 726,485,761 726,485,761
16 10,897,286,401 10,897,286,401
17 174,356,582,401 174,356,582,401
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A Python Code for Optimizing Resolvent De-

gree Bounds using Obliteration

import math

def multichoose(N, k):

return math.comb(N+k-1,k)

"""Helper function to determine the maximum allowable separation

based

on a given degree constraint."""

def bestSeparation(maxDegree, systemType):

totalDegree = 1

maxSeparation = {}

key = max((key for key in systemType))

while True:

if systemType[key] == 0:

del systemType[key]

key -= 1

currDegree = key

if currDegree == 1:

return(totalDegree, maxSeparation, systemType)

if totalDegree*currDegree <= maxDegree:

totalDegree *= currDegree

systemType[key] -= 1

if key in maxSeparation.keys():

maxSeparation[key] += 1

else:

maxSeparation[key] = 1

else:

return(totalDegree, maxSeparation, systemType)

"""Applies the obliteration algorithm to a system of type

systemType, only

allowing solutions of weight at most maxDegree. Returns the

dimension bound computed and modifies the list stepDegrees

to record the necessary degree elevation at each step."""

def optimizer(maxDegree, systemType, stepDegrees, RD):

for key in systemType:
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if systemType[key] == 0:

del systemType[key]

if len(systemType.keys()) == 1:

return systemType[1]+1

if sum(systemType[key] for key in systemType) > RD:

return float(’inf’)

(totalDegree, outerSeg, systemType) = bestSeparation(maxDegree,

systemType)

stepDegrees += [totalDegree]

k = sum(outerSeg[key] for key in outerSeg)

newSystemType = {key: systemType[key] for key in systemType}

for key in systemType:

i = 1

while key-i >= 1:

#print(key, key-i, multichoose(k,i))

newSystemType[key-i] += systemType[key]*multichoose(k, i)

i += 1

newSystemType[1] += k

return optimizer(maxDegree, newSystemType, stepDegrees, RD)

def obliterationOptimizer(systemType):

m = max(systemType.keys())

maxDegree = math.prod(key**systemType[key] for key in

systemType)

RD = float(’inf’)

N = float(’inf’)

while True:

degreesNeeded = []

#print(maxDegree, systemType)

N = optimizer(maxDegree, dict(systemType), degreesNeeded,

RD)

curr = max(N, maxDegree) #print(systemType)

if curr <= RD:

RD = curr

else:

return RD

maxDegree = min(max(N, max(degreesNeeded)), maxDegree-1)
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"""Given a positive integer r, returns an upper bound on n such

that RD(n) <= n-r."""

def bound(r):

sys = {(r-i):1 for i in range(r)}

return obliterationOptimizer(sys)+1
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B Recovering Roots after a Tschirnhaus Trans-

formation

One natural question is whether (or under what circumstances) a Tschirn-
haus transformation can be inverted. We can consider this question from two
distinct points of view. First, the classical perspective, which we adopted
in the previous section, in which a concrete degree n polynomial p(x) =
xn + a1x

n−1 + . . .+ an−1x+ an ∈ K[x] is fixed and a transformed polynomial
is obtained by applying a degree n−1 polynomial transformation T (x) (called
a Tschirnhaus transformation) to the roots of p(x). We can then consider
the problem of recovering the roots of the original polynomial p from the
roots of the transformed polynomial q. In particular, if q is solvable and T is
defined over a solvable extension of K, does it follow that p is solvable? In
general the answer is no – as a trivial example, suppose T (x) = 0. Then the
transformed polynomial is q(y) = yn regardless of the original polynomial p,
so the roots of q obviously convey no information about the roots of p. On
the other hand, for most transformations T the roots of p can be computed
rationally from the roots of q. More precisely, this can be done for any T
outside of a closed subset of “bad” Tschirnhaus transformations which send
two or more distinct roots of p to the same value. We will show that the
bad transformations form the zero locus of a homogeneous polynomial in
the coefficients of T (x). We describe how to compute this polynomial and
compute it explicilty in the n = 3 case.

Second, a more modern perspective is to work over the transcendental
field extension K(a1, . . . , an), view p(x) = xn + a1x

n−1 + . . . + an−1x + an
as the generic polynomial, and define a Tschirnhaus transformation to be a
K(a1, . . . , an)-linear field automorphism of K(a1, . . . , an)[x]/(p(x)). This is
the definition of Tschirnhaus transformation adopted by Wolfson in [21]

Wolfson shows every such isomorphism can be described by the assign-
ment x 7→ T (x), where T is a degree n−1 polynomial, providing the connec-
tion to the classical point-of-view. Conversely, an assignment x 7→ T (x) de-
fines an K(a1, . . . , an)-linear endomorphism which is an automorphism if and
only if its determinant (a polynomial in a1, . . . , an and the coefficients of T )
is nonzero. The classical problem of recovering the roots of the original poly-
nomial then corresponds to computing the inverse of such an automorphism,
which requires only linear algebra. This provides a method for recovering the
original roots which works generically; on the other hand, after specializing
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to particular values of a1, . . . , an in K the determinant may become zero, so
this does not work for every choice of polynomial p and Tschirnhaus transfor-
mation T . For n = 3 we compute the determinant polynomial explicitly and
show that it is zero for exactly those choices of a1, . . . , an and T such that T is
a “bad” Tschirnhaus transformation for p(x) = xn+a1x

n−1+ . . .+an−1x+an
in the sense of the previous paragraph.

B.1 Recovering Roots from a Classical Perspective

Let p ∈ K[x] be a degree n polynomial, let T (x) = b0 + b1x+ . . .+ bn−1x
n−1

be a Tschirnhaus transformation defined over some extension L of K, and
let q be the transformed polynomial obtained by applying T to the roots of
p. In this section, we will describe how to compute the roots of p if T and
the roots of q are known.

Let yi be a root of q and suppose xi is some root of p such that yi = T (xi).
Then xi is a root of both p(x) and T (x)− yi, so it is a root of

GCD(p(x), T (x)− yi).

This is a polynomial L[x] which can be computed (rationally over L) using the
Euclidean algorithm. The degree of this polynomial is equal to the number
of roots of p(x) which satisfy T (xi) = yi. In particular, if T (x1), . . . , T (xn)
are all distinct, then this will be a linear polynomial for each i and so we
can recover the roots xi rationally in terms of the yi. On the other hand, if
q(y) has a root of multiplicity d, we may need to solve an equation of degree
up to d to recover the roots of p(x). In the extreme case where T (x) = b0
is a constant transformation, so q(y) = (y − b0)n, knowing the roots of q(y)
conveys no information about the roots of p(x). On the other hand, if p(x)
has n distinct roots and T (x) is a nonconstant polynomial, then at most
n − 1 of T (x1), . . . , T (xn) can be equal (since T has degree at most n − 1),
then the roots of p(x) can be recovered from the roots of q(y) after solving
an auxiliary polynomial of degree at most n− 1.

Now suppose the roots x1, . . . , xn of p(x) are all distinct. In light of the
discussion in the previous paragraph, we will say a Tschirnhaus transforma-
tion T (x) = b0 + . . .+ bn−1x

n−1 is “bad” if T (xi) = T (xj) for i 6= j, so that T
maps two distinct roots of p(x) to the same root of q(y), so that irrationalities
potentially arise in recovering the original roots from the transformed roots.
(Though note that even for bad transformations, recovering the roots of p
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from those of q may be easier than determining roots of p directly.) Then T
is bad if and only if

0 =
∏
i<j

(T (xi)− T (xj))

=
∏
i<j

[(
b0 + b1xi + . . .+ bn−1x

n−1
i

)
−
(
b0 + b1xj + . . .+ bn−1x

n−1
j

)]
=
∏
i<j

(
n−1∑
k=1

bk(xki − xkj )

)

=
∏
i<j

(
(xi − xj)

n−1∑
k=1

bk(xk−1i + xk−1j

)

=

(∏
i<j

(xi − xj)

)∏
i<j

(
n−1∑
k=1

bk(xk−1i + xk−1j )

)

By assumption, xi 6= xj for i 6= j, so
∏

i<j(xi − xj) 6= 0. Thus we must have

∏
i<j

(
n−1∑
k=1

bk(xk−1i + xk−1j )

)
= 0.

Each term in the product is homogeneous linear in b1, . . . , bn−1, and there are(
n
2

)
terms, so the set of bad Tschirnhaus transformations is the zero locus of

a homogeneous degree
(
n
2

)
polynomial condition in the bi’s (with no depen-

dence on b0). Furthermore, this expression is symmetric in x1, . . . , xn, so the
coefficients of this polynomial can themselves be written as polynomial func-
tions in a1, . . . , an, since these generate the algebra of symmetric functions
in the xi’s.

Example 4. n = 3 Let n = 3 and let p(x) = x3 + a1x
2 + a2x + a3 be

a cubic polynomial with three distinct roots x1, x2, x3. Then a Tschirnhaus
transformation T (x) = b0+b1x+b2x

2 is bad (in the sense that T (xi) = T (xj)
for some i 6= j) if and only if

(b1 + b2(x1 + x2))(b1 + b2(x1 + x3))(b1 + b2(x2 + x3)) = 0.
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Expanding the left-hand side, we have

b31+

b21b2(2(x1 + x2 + x3))+

b1b
2
2((x1 + x2)(x1 + x3) + (x1 + x2)(x2 + x3) + (x1 + x3)(x2 + x3))+

b32(x1 + x2)(x1 + x3)(x2 + x3) = 0.

Given that a1 = −(x1 + x2 + x3), a2 = x1x2 + x1x3 + x2x3, a3 = −x1x2x3,
one can verify by direct computation that

2(x1 + x2 + x3) = −2a1

(x1 + x2)(x1 + x3) + (x1 + x2)(x2 + x3) + (x1 + x3)(x2 + x3) = a21 + a2

(x1 + x2)(x1 + x3)(x2 + x3) = a3 − a1a2.

Thus the set of bad Tschirnhaus transformations is the zero locus of

b31 − 2a1b
2
1b2 + (a21 + a2)b1b

2
2 + (a3 − a1a2)b32.

Note that this contains the constant Tschirnhaus transformations, since these
have b1 = b2 = 0. As another example, the Tschirnhaus transformation
T (x) = x2 is bad if and only if a3 − a1a2 = 0, in which case we have

p(x) = x3 + a1x
2 + a2x+ a1a2 = (x2 + a2)(x+ a1)

and we can see explicitly that p(x) has two roots (namely i
√
a2 and −i√a2)

that map to the same root via T .

B.2 Recovering Roots from a Modern Perspective

Fix an algebraically closed fieldK and letKn = K(a1, . . . , an), with a1, . . . , an
indeterminates. Let p(x) = xn +a1x

n−1 + . . .+an. Following Wolfson in [21],
we can define a Tschirnhaus transformation to be a Kn-linear automorphism
of Kn[x]/(p(x)). Since 1, x, . . . , xn−1 form a basis for this field as a Kn-vector
space, any such automorphism must send

x 7→ b0 + b1x+ . . .+ bn−1x
n−1

for some b0, . . . , bn−1 ∈ Kn, and is completely determined by this choice.
Conversely, given any degree n−1 polynomial T (x) = b0+b1x+. . .+bn−1x

n−1,
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the assignment x 7→ T (x) yields an Kn-linear endomorphism, and this is
an automorphism when its determinant is nonzero. For b0, . . . , bn−1 ∈ Kn,
Wolfson shows that T (x) is a Tschirnhaus transformation in this sense if and
only if T is not the constant polynomial. On the other hand, the determinant
is a polynomial in the bi’s, so there are choices of T with coefficients in a finite
field extension of Kn that do not define a Tschirnhaus transformation.

Given such a Tschirnhaus transformation Φ : x 7→ T (x) we can compute
its inverse explicitly. For k = 0, . . . , n− 1 we have

Φ(xk) = T (x)k = (b0 + b1x+ . . .+ bn−1x
n−1)k.

Reducing the right-hand side modulo the degreee n polynomial p(x) we can
express each Φ(xk) as a (degree at most n − 1) polynomial in x, and so
obtain the matrix for Φ relative to the basis {1, x, x2, . . . , xn−1}. Inverting
this matrix then yields the inverse Tschirnhaus transformation, a degree n−1
polynomial S(x) = c0 + c1x+ . . .+ cn−1x

n−1 with the property that S(T (x))
is congruent to x modulo p(x).

We can connect to the classical point-of-view by specializing to particular
values of a1, . . . , an ∈ K. (More precisely, choose a map K(a1, . . . , an)→ K.)
Then p(x) is a polynomial with coefficients in K, and the assignment x 7→
T (x) on Kn[x]/(p(x)) sends any root xi of p to T (xi), so defines a Tschirnhaus
transformation in the classical sense. Moreover, since S(T (x)) is congruent
to x modulo p(x), for any root xi of p we must have S(T (xi)) = xi, so
computing the inverse Tschirnhaus transformation S as above provides a
method for recovering the roots of the original polynomial from the trans-
formed roots. This method does not work in all possible cases, however, for
two reasons. First, not every classical Tschirnhaus transformation defines a
Kn[x]/(p(x))-automorphism, and second, the coefficients c0, . . . , cn−1 of the
inverse transformation S will in general be rational functions of a1, . . . , an,
and so S may not be well-defined after specializing. Both of these correspond
to the determinant of Φ being zero for particular choices of a1, . . . , an and
T , which in turn corresponds to T being a bad transformation of p(x) in the
sense that T (xi) = T (xj) for some distinct roots xi and xj of p. In the next
subsection we show this for the n = 3 case by computing the determinant of
a general Tschirnhaus transformation Φ.

Example 5. n = 3 Let p(x) = x3+a1x
2+a2x+a3, with a1, . . . , a3 indetermi-

nants. For any (b0, b1, b2) ∈ K(a1, a2, a3)
3
, the assignment x 7→ b0+b1x+b2x

2
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defines a K(a1, a2, a3)-linear endomorphism

Φ : K(a1, a2, a3)[x]/(p(x))→ K(a1, a2, a3)[x]/(p(x)),

which is an automorphism when det Φ 6= 0. To compute the determinant and
inverse of Φ we first compute its matrix relative to the K(a1, a2, a3)-basis
{1, x, x2}. We have

1 7→ 1

x 7→ b0 + b1x+ b2x
2

x2 7→ (b0 + b1x+ b2x
2)2.

After reducing modulo p(x) = x3 + a1x
2 + a2x+ a3, we have

(b0 + b1x+ b2x
2)2 ≡ (b20 − 2b1b2a3 + b22a1a3)+

(2b0b1 − 2b1b2a2 + b22(a1a2 − a3))x+

(b21 + 2b0b2 − 2b1b2a1 + b22(a
2
1 − a2))x2

so the matrix of Φ is 1 0 0
b0 b1 b2

b20 − 2b1b2a3 + b22a1a3 2b0b1 − 2b1b2a2 + b22(a1a2 − a3) b21 + 2b0b2 − 2b1b2a1 + b22(a
2
1 − a2)


and so

det Φ = b31 − 2a1b
2
1b2 + (a21 + a2)b1b

2
2 + (a3 − a1a2)b32.

Note that this is exactly the polynomial derived in section 2.2 describing the
locus of “bad” Tschirnhaus transformations.

For example, for b0 = 0, b1 = 0, b2 = 1 we have

det Φ = a3 − a1a2 6= 0

so the assignment x 7→ x2 defines a Tschirnhaus transformation. Inverting
this matrix for this transformation, we find that Φ−1 satisfies

1 7→ 1

x 7→ − a1a3
a1a2 − a3

+
a2 − a21
a1a2 − a3

x+
1

a1a2 − a3
x2

x2 7→ x
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so S(x) = − a1a3
a1a2−a3 +

a2−a21
a1a2−a3x + 1

a1a2−a3x
2 gives an inverse to T (x) = x2,

in the sense that S(T (x)) = x modulo p(x). Moreover, if we specialize to a
polynomial p(x) ∈ K[x] by choosing values of a1, a2, a3 in K, then transform
p(x) to q(y) via the assignment y = x2, we can recover the roots of p from
the roots of q simply by applying the polynomial S to the roots of q, provided
that a1a2 − a3 6= 0.

65



C Determining a Tschirnhaus Transformation

for the Solution of the Cubic

Let p(x) = x3 + a2x+ a3.
Fix an algebraic closure K and suppose p factors as

p(x) = (x− λ1)(x− λ2)(x− λ3)

over K.
We will show there is a Tschirnhaus transformation T (x) = b0+b1x+b2x

2

with coefficients in a solvable extension (in fact, a single quadratic extension
suffices) of K such that the transformed polynomial

q(y) = (y − T (λ1))(y − T (λ2))(y − T (λ3)) = y3 + A1y
2 + A2y + A3

satisfies A1 = A2 = 0, and hence is in solvable form. Note that though we
assume a1 = 0 in the original polynomial p, this does not guarantee A1 = 0 in
the transformed polynomial, so it is necessary to still include this condition.

In terms of b0, b1, b2, to satisfy A1 = 0 we require

0 = A1

= −T (λ1)− T (λ2)− T (λ3)

= −3b0 − b1(λ1 + λ2 + λ3)− b2(λ21 + λ22 + λ23)

= −3b0 + a1b1 − b2(a21 − 2a2)

= −3b0 + 2a2b2

For A2 = 0, observe that

A2 =
∏
i 6=j

T (λi)T (λj)

=
1

2

(
(

3∑
i=1

T (λi))
2 −

3∑
i=1

T (λi)
2

)

=
1

2

(
A2

1 −
3∑

i=1

T (λi)
2

)
.
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Then if A1 = 0, to further satisfy A2 = 0 it suffices to choose T so that

0 =
3∑

i=1

T (λi)
2

=
3∑

i=1

(b0 + b1λi + b2λ
2
i )

2

=
3∑

i=1

(b20 + b21λ
2
i + b22λ

4
i + 2b0b1λi + 2b0b2λ

2
i + 2b1b2λ

3
i )

= 3b20 + 2b0b1

(
3∑

i=1

λi

)
+ (b21 + 2b0b2)

(
3∑

i=1

λ2i

)
+ 2b1b2

(
3∑

i=1

λ3i

)
+ b22

(
3∑

i=1

λ4i

)
.

Now, using Newton’s Identities, we can compute

3∑
i=1

λi = −a1 = 0,

3∑
i=1

λ2i = a21 − 2a2 = −2a2,

3∑
i=1

λ3i = −a31 + 3a1a2 − 3a3 = −3a3,

3∑
i=1

λ4i = a41 − 4a21a2 + 4a1a3 + 2a22 = 2a22

Thus to determine T it suffices to find a solution to the system of equa-
tions

−3b0 + 2a2b2 = 0

3b20 + 2a22b
2
2 − 2a2(b

2
1 + 2b0b2)− 6a3b1b2 = 0.
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[7] Raymond Garver. On the removal of four terms from an equation by
means of a tschirnhaus transformation. Bulletin of the American Math-
ematical Society, 35(1):73–78, 1929.

[8] Sir William Rowan Hamilton. Inquiry Into the Validity of a Method
Recently Proposed by George B. Jerrard, Esq. for Transforming and Re-
solving Equations of Elevated Degrees Undertaken at the Request of the
Association. Richard and John E. Taylor, 1836.

[9] Joe Harris. Galois groups of enumerative problems. Duke Mathematical
Journal, 46(4):685–724, 1979.

[10] Curtis Heberle and Alexander J. Sutherland. Upper bounds on resolvent
degree via sylvester’s obliteration algorithm. 2021.

[11] Curtis R. Heberle. Removal of 5 terms from a degree 21 polynomial,
2021.
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