Dances from Around the World
Exploring Culture, History, and Art through KIBO Robotics and Programming

DevTech Research Group
Eliot-Pearson Department of Child Study and Human Development
Tufts University
http://ase.tufts.edu/DevTech/

Dances from Around the World by the DevTech Research Group is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 3.0 Unported License.

Under this license, you may use and adapt this work but you must attribute the work to the DevTech Research Group. You may not use or adapt this work for commercial purposes.

© 2015, DevTech Research Group, Tufts University.
Table of Contents

Introduction to the Curriculum .. 3
Pacing .. 3
Materials .. 4
Pedagogical Framework: Positive Technological Development ... 4
Classroom Management ... 5
Student Assessments ... 7
Academic Frameworks Addressed .. 7
Integrating Social Studies and the Arts with Programming & Robotics ... 9
Lesson 1 – Sturdy Building .. 11
Lesson 2 – What is a Robot? .. 15
Lesson 3 – What is Programming? .. 19
Lesson 4 – What are Sensors (Part 1)? .. 22
Lesson 5 – What are Repeats? ... 25
Lesson 6 – What are Sensors (Part 2)? .. 28
Lesson 7 – What are Ifs? ... 31
Lesson 8 – The Dances Around the World Project ... 34
Appendix A Materials .. 36
Appendix B Positive Technological Development ... 37
Appendix C Resources .. 39
References ... 40
Introduction to the Curriculum

This curriculum introduces powerful ideas from computer science, specifically programming in a robotics context, to pre-kindergarten through 2nd grade children in a structured, developmentally appropriate way. While the curriculum is designed for KIBO robotics, the powerful ideas are applicable to other robotic construction kits. The term powerful idea refers to a central concept within a domain that is at once personally useful, interconnected with other disciplines, and has roots in intuitive knowledge that a child has internalized over a long period of time. The powerful ideas from computer science addressed in this curriculum include: the engineering design process, robotics, programming, repeat functions, and sensors. These powerful ideas are explored in the context of a curriculum that draws on the theme of dances from around the world. Each unit follows the same basic structure: 1) warm up games to playfully introduce or reinforce concepts, 2) introduction of the powerful idea through a challenge, 3) work individually or in pairs, 4) technology circle, and 5) free explorations. The culmination of the unit is an open-ended project to share with family and friends. Teachers can adapt the lesson structure and its components to suit their unique class’s needs.

Just as young children can read age appropriate books, computer programming can be made accessible by providing young children with appropriate tools such as KIBO.

Pacing

The curriculum unit consists of a minimum of 20 hours and it is designed to take place over the course of one intensive week of work (i.e. in a camp setting or during a robotics week at school) or over the course of a few months with one or two sessions per week. Depending on children’s developmental levels and prior experience with technology, programming, and robotics, students might need more or less time than the guidelines here indicate. Each lesson in the curriculum can be spread out over several sessions to accommodate the classroom schedule and students’ attention spans. Depending on the students, a class may benefit from between one and two hours to devote to their robotics and programming activities at a time. This curriculum provides suggested time allotments, but they should be adapted to suit the needs of each classroom.

Some students may benefit from further division of the activities into smaller steps or from more time to explore each new concept before moving onto the next, either in the context of free exploration or with teacher-designed challenges. Each of the powerful ideas in this curriculum can easily be expanded into a unit of study. For instance, students could explore a range of different activities and challenges with sensors to learn how they work in more depth, therefore expanding the time allocated for learning about sensors.

To supplement the structured challenges, two to three hours of free-exploration are allotted throughout the curriculum. These open-ended sessions are vital for children to fully understand the complex ideas behind their robotic creations and programs. The free-exploration sessions also serve as a time for teachers to observe students’ progress and understandings. These sessions are as important for learning as the lessons themselves! In planning and adjusting the timeframe of this curriculum, free-exploration sessions should not be left by the wayside. Rather, if time is tight, teachers can consider leaving out a particular lesson altogether, giving children enough time to really understand the ideas they are introducing, rather than skimming over all the lessons presented in this curriculum. Free-exploration provides opportunities for playing with materials and ideas. This will help build a solid foundation.
Materials

The robotics kit referred to in this curriculum is the KIBO robotics kit, developed by the DevTech Research Group at Tufts University and made commercially available through KinderLab Robotics, Inc. Another kind of material used in the curriculum is inexpensive crafts and recycled materials. The use of crafts and recycled materials, a practice already common in other domains of early childhood education, lets children build with a range of materials with which they are already comfortable with. There are many supplemental materials such as the KIBO Says cards, Expert Badges, and Engineering Design Journals that can be purchased through KinderLab Robotics. These are denoted with an asterisk (*). A full list of materials can be found in Appendix A.

Pedagogical Framework: Positive Technological Development

The theoretical foundation of this curriculum, called Positive Technological Development (PTD), was developed by Prof. Marina Umaschi Bers and can be found in two of her books: *Blocks to Robotics: Learning with Technology in the Early Childhood Classroom* (Bers, 2008) and *Designing Digital Experiences for Positive Youth Development: From Playpen to Playground* (Bers, 2012). More information is included in Appendix B.

The PTD framework guides the development, implementation and evaluation of educational programs that use new technologies to promote learning as an aspect of positive youth development. The PTD framework is a natural extension of the computer literacy and the technological fluency movements that have influenced the world of education but adds psychosocial and ethical components to the cognitive ones. From a theoretical perspective, PTD is an interdisciplinary approach that integrates ideas from the fields of computer-mediated communication, computer-supported collaborative learning, and the Constructionist theory of learning developed by Seymour Papert (1993), and views them in light of research in applied development science and positive youth development.

As a theoretical framework, PTD proposes six positive behaviors (six C’s) that should be supported by educational programs that use new educational technologies, such as KIBO robotics. These are: creation, creativity, communication, collaboration, community building and choices of conduct.

This curriculum engages young learners in:

1. **Content creation**, by designing a KIBO robot and programming its behaviors. The engineering design process of building and the computational thinking involved in programming foster competence in computer literacy and technological fluency. The use of Engineering Design Journals document for the children themselves, as well as for teachers and parents, their own thinking, their learning trajectories and the project’s evolution over time.
2. **Creativity**, by making and programming personally meaningful projects, problem solving in creative playful ways and integrating different media such as robotics, motors, sensors, recyclable materials, arts and crafts, and a tangible programming language. Final KIBO projects that represent a theme found in the overall early childhood curriculum are a wonderful way to engage children in the creative process of learning.
3. **Collaboration**, by engaging children in a learning environment that promotes working in teams, sharing resources and caring about each other while working with their KIBO robots. The curriculum utilizes a collaboration web: a tool used to foster collaboration and support. At the
beginning of each day of work, each child receives, along with their design journal, a personalized printout with his or her photograph in the center of the page and the photographs and names of all other children in the class arranged in a circle surrounding that central photo (see Appendix B for an example). Throughout the day, with the teacher’s prompting, each child draws a line from his or her own photo to the photos of the children with whom he or she has collaborated. Collaboration is defined here as getting or giving help with a project, programming together, lending or borrowing materials, or working together on a common task. At the end of the week, children write or draw “thank you cards” to the children with whom they have collaborated the most.

4. **Communication**, through mechanisms that promote a sense of connection between peers or with adults. For example, technology circles, when children stop their work, put their projects on the table or floor, and share their learning process. Technology circles present a good opportunity for problem solving as a community. Some teachers invite all the children sit together in the rug area for this. It can also be helpful to make a “Robot Parking Lot” for all the robots to go while they are not being worked on, so children have empty hands and can focus at the technology circles. Each classroom will have its own routines and expectations around group discussions and circle times, so teachers are encouraged to adapt what already works in their class for the technology circles in this curriculum.

5. **Community-building**, through scaffolded opportunities to form a learning community that promotes contribution of ideas. Final projects done by children are shared with the community via an open house, demo day, or exhibition. These open houses provide authentic opportunities for children to share and celebrate the process and tangible products of their learning with family and friends. Each child is given the opportunity not only to run their robot, but to play the role of teacher as they explain to their family how they built, programmed, and worked through problems.

6. **Choices of conduct**, which provide children with the opportunity to experiment with “what if” questions and potential consequences, and to provoke examination of values and exploration of character traits while working with robotics. As a program developed following the PTD approach, the focus on learning about robotics is as important as helping children develop an inner compass to guide their actions in a just and responsible way. One way to encourage positive choices is by using “Expert Badges”. Children who master concepts quickly can earn Expert Badges (a sticker for them to wear). A child wearing an expert badge uses the remainder of the class period helping any students who are having difficulty with the concepts they have mastered. Children wearing Expert Badges and actively helping others will also have an easier time completing their collaboration webs.

Classroom Management

Teaching robotics and programming in an early childhood setting requires careful planning and ongoing adjustments when it comes to classroom management issues. These issues are not new to the early childhood teacher, but they may play out differently during robotics activities because of the novelty and behavior of the materials themselves. Issues and solutions other than those described here may arise from classroom to classroom; teachers should find what works in their particular circumstances. In general, provide and teach a clear structure and set of expectations for using materials and for the routines of each part of the lessons (technology circles, clean up time, etc.). Make
sure the students understand the goal(s) of each activity. Posters and visual aids can facilitate children’s attempts to answer their own questions and recall new information.

Group Sizes

The curriculum refers to whole-group versus pair or individual work. In fact, some classrooms may benefit from other groupings. Whether individual work is feasible depends on the availability of supplies, which may be limited for a number of reasons. However, an effort should be made to allow students to work in as small groups as possible, even individually. At the same time, the curriculum includes numerous opportunities to promote conversations which are enriched by multiple voices, viewpoints, and experiences. Some classes may be able to have these discussions as a whole group. Other classes may want to break up into smaller groups to allow more children the opportunity to speak and to maintain focus. Some classes structure robotics time to fit into a “center time” in the schedule, in which students rotate through small stations around the room with different activities at each location. This format gives students more access to teachers when they have questions and lets teachers tailor instruction and feedback as well as assess each students’ progress more easily than during whole-group work. It is important to find a structure and group size for each of the different activities (instruction, discussions, work on the challenges, and the final project) that meet the needs of the students and teachers in the class.

Managing Materials

Classroom-scale robotics projects require a lot of parts and materials, and the question of how to manage them brings up several key issues that can support or hinder the success of the unit. The first issue is accessibility of materials. Some teachers may choose to give a complete kit of materials to each child, pair, or table of several children. Children may label the kit with their name(s) and use the same kit for the duration of the curriculum. Other teachers may choose to take apart the kits and have materials sorted by type and place all the materials in a central location. Since different projects require different robotic and programming elements, this set-up may allow children to take only what they need and leave other parts for children who need them. A word of caution, however: If materials are set-up centrally, they must be readily visible and accessible so children don’t forget what is available to them or find it too much of a hassle to get what they need. Regardless, it is important to find a clearly visible place to set up materials for demonstrations, posters or visual aids to display for reference, and for robotics and programming materials for each lesson.

The second issue is usability. In some cases, children’s desks or tables do not provide enough space to build a robot and program it. Care must be taken to ensure that children have enough space to use the materials available to them. If this is not the case they may tend towards choosing materials that fit the space but not their robotics or programming goal.

Teachers should carefully consider how to address these issues surrounding materials in a way that makes sense for their class’s space, routines, and culture. Then, it is crucial to set expectations for how to use and treat materials. These issues are important not only in making the curriculum logistically easier to implement, but also because, as described in the Reggio Emilia tradition, the environment can act as the “third teacher” (Darragh, 2006).
Student Assessments

Children have fun while working with KIBO and also learn about robots, programming and engineering. At the same time, evaluating the student’s learning process and the outcomes is important. This can be done through documenting student’s projects and ways of talking about and sharing their projects; and analyzing their Engineering Design Journals. Evaluating individual children’s learning, while they are working in groups, can be challenging. The assessment workbook made available through KinderLab Robotics can be useful for this task.

To keep assessment manageable in a busy classroom and also give children a tool to self-regulate their exploration process and self-assess, the assessment criteria given with each lesson can constitute a sequence of concrete achievements leading up to an “Engineer’s License.” Each lesson is associated with a different level, e.g. “Sturdy Builder” or “Programmer I,” that incrementally completes the license, at which point the child is ready to start a final project. During the course of each lesson, children will explore and learn at different rates. When they think they have accomplished the criteria for that lesson’s assessments, they demonstrate this to a teacher, who marks that licensure level on their certificate or helps them identify missing components. Children re-attempt any level until they have mastered it. This format allows for individual differences, helps teachers manage the amount of time assessment takes, and provides a fluid way for teachers to assess both individual progress and that of the whole class.

Academic Frameworks Addressed

This curriculum is designed for early childhood students (pre-kindergarten through second grade) and covers many foundational computer science and engineering skills that are not often taught in early childhood. These academic frameworks are taught through a series of powerful ideas: the engineering design process, robotics, programming, and sensors. Each powerful idea has activities and materials (in this case, the activities are tailored to fit the theme of dances from around the world) that encourage mastery of the powerful idea and the foundational academic subjects that support it. In addition, since robotics provides a powerful way to integrate disciplinary knowledge and skills, the curriculum addresses foundational math, literacy, science, and art skills. Within each lesson in this curriculum, there are descriptions of at least one math and one language arts activity that fit in with the powerful idea being taught. Furthermore, each lesson addresses the Common Core Framework, the ITEEA standards, and the Massachusetts Frameworks.

Common Core Frameworks Addressed

In addition to teaching basic robotics and programming skills, the activities in this curriculum foster many of the foundational math, reading, and language skills that are commonly taught in early childhood classrooms. See Table 1 below for examples of how the activities in this curriculum are aligned to the U.S. Common Core frameworks. The Common Core framework is “a set of standards that were created to ensure that all students graduate from high school with the skills and knowledge necessary to succeed in college, career, and life, regardless of where they live” (National Governors Association Center for Best Practices & Council of Chief State School Officers, 2010).
Table 1: Common Core Frameworks

<table>
<thead>
<tr>
<th>Curricular Activity</th>
<th>Academic Frameworks Addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Circle</td>
<td>In technology circle time, children practice their speaking skills as they recount their experiences, share facts, and ask questions about one another's work.</td>
</tr>
<tr>
<td></td>
<td>CCSS.ELA-LITERACY.SL.K.1- Participate in collaborative conversations</td>
</tr>
<tr>
<td></td>
<td>CCSS.ELA-LITERACY.SL.K.6- Speak audibly and express ideas clearly</td>
</tr>
<tr>
<td></td>
<td>CCSS.ELA-LITERACY.SL.K.3- Ask & answer questions to get information</td>
</tr>
<tr>
<td>Engineering Design Journals</td>
<td>Children use their Engineering Design Journals for writing and drawing explanations for their work and answering questions.</td>
</tr>
<tr>
<td></td>
<td>CCSS.ELA-LITERACY.W.K.2- Use a combination of drawing, dictating, and writing</td>
</tr>
<tr>
<td></td>
<td>CCSS.ELA-LITERACY.L.K.2.D- Spell simple words</td>
</tr>
<tr>
<td>Building with robotic and non-robotic materials</td>
<td>When building with robotic and non-robotic materials (arts and crafts and recyclables), children grapple with size and shape.</td>
</tr>
<tr>
<td></td>
<td>CCSS.MATH.CONTENT.K.G.B.4- Analyze and compare shapes</td>
</tr>
<tr>
<td>Programming</td>
<td>When programming, children practice with sequence, order, counting, number sense, and estimation.</td>
</tr>
<tr>
<td></td>
<td>CCSS.MATH.CONTENT.K.CC.A.1- Number names and count sequence</td>
</tr>
<tr>
<td></td>
<td>CCSS.MATH.CONTENT.K.CC.B.4- Relationship between numbers and quantities</td>
</tr>
<tr>
<td></td>
<td>CCSS.MATH.CONTENT.K.OA.A.1- Addition and subtraction</td>
</tr>
</tbody>
</table>

ITEEA Standards and MA Frameworks Addressed

The International Technology and Engineering Educators Association (ITEEA) is a professional organization for technology, design, and engineering educators that promotes technological literacy by supporting the teaching of technology in schools. Table 2 (below) shows how the ITEEA standards line up with the Massachusetts Science and Technology Frameworks and many of the powerful ideas found in this curriculum.

Table 2: ITEEA Standards and MA Frameworks

<table>
<thead>
<tr>
<th>Powerful Idea</th>
<th>International Technology and Engineering Educators Association Standards by standard and grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering design process</td>
<td>- People plan to help get things done. (Std 2E; K-2)</td>
</tr>
<tr>
<td></td>
<td>- Everyone can design solutions to a problem. (Std 8A; K-2)</td>
</tr>
<tr>
<td></td>
<td>- Engineering design requires creative thinking and consideration of a variety of ideas (and strategies) to solve practical problems (generated by needs and wants). (STE Std 2 Central Concept; PreK-2 (& Gr 3-5))</td>
</tr>
<tr>
<td>MA Science and Technology / Engineering (STE) and Technology Literacy (TL) Frameworks by standard and grade</td>
<td></td>
</tr>
</tbody>
</table>
Design is a creative process (that leads to useful products and systems). (Std 8B; K-2/Std 8C; Gr 3-5/Std 8E; Gr 6-8)
- All designs can be improved. (Std 8F; Gr 6-8)
- The engineering design process includes identifying a problem, looking for ideas, developing solutions, and sharing solutions with others. (Std 9A; K-2)
- Asking questions and making observations helps a person to figure out how things work. (Std 10A; K-2)
- Troubleshooting is a way of finding out why something does not work so it can be fixed. (Std 10C; Gr 3-5)

Robotics
- Build or construct an object using the design process. (Std 11B; K-2)
- Discover how things work. (Std 12A; K-2)
- Systems have parts that work together to accomplish a goal. (Std 12B; K-2)
- Tools, machines, etc. use energy to do work. (Std 16D; Gr 3-5)
- With teacher direction, use appropriate technology tools [...] to define problems and propose hypotheses. (TL Std 3.6; Gr 3-5)
- Describe the various ways that objects can move, such as in a straight line, zigzag, back-and-forth, round-and-round, fast, and slow. (STE Physics Std 3; K-2)

Programming: Control Flow by Sequencing and Instructions
- Recognize and use everyday symbols (Std 12C; K-2)
- People use symbols when they communicate by technology. (Std 17C; K-2)
- The study of technology uses many of the same ideas and skills as other subjects. (Std 3A; K-2)
- Identify and explain how symbols and icons [...] are used to communicate a message. (STE Tech Std 3.4; Gr 6-8)

Sensors
- The natural world and human-made world are different. (Std 1A; K-2)
- Characteristics of natural and human-made materials. (STE Tech Std 1.1; PreK-2)
- Human beings use parts of the body as tools. (STE Tech Std 2.2; PreK-2)

Integrating Social Studies and the Arts with Programming & Robotics

The Dances from Around the World curriculum integrates the exploration of diversity, culture, and the arts with powerful ideas from programming and robotics. In addition to the math and language arts connections found in each lesson, you will also find a social studies connection and/or arts connection that focuses on some aspect of culture and dance. The social studies and arts connections (see Table 3) are derived to meet the Massachusetts DOE Frameworks for History and Social Science, as well as the Massachusetts DOE Frameworks for Arts. This curriculum contains activities that specifically address the following frameworks: exploring someone’s family’s history, observing dances from a
variety of cultures, identifying and describing movements, experiencing music and food from different cultures, creating a repeating dance, and gathering information.

Table 3: Social Studies and Arts Connections within the Dances From Around the World Curriculum

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Social Studies and Arts Connection:</th>
<th>Social Studies Activities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 1: Sturdy Building</td>
<td>Exploring someone’s family history</td>
<td>Children interview a parent, relative, or friend and find out their background. What country are he/she or his/her family from? Does he/she speak any other languages? Etc. Then, children will create a non-robotic vehicle and decorate it to represent that person using symbols (like flags, etc.) and pictures to depict his/her culture.</td>
</tr>
<tr>
<td>Lesson 2: What is a Robot?</td>
<td>Observe dances from a variety of cultures and describe their movements</td>
<td>Children will be exposed to songs and dances from other countries through watching a variety of videos. They will then decorate their KIBO robot to wear one of the costumes they saw in a video.</td>
</tr>
<tr>
<td>Lesson 3: What is a Program?</td>
<td>Identifying and describing movements</td>
<td>Children will learn about choreography and then dance the Macarena dance. Later in this lesson, after programming their robots to dance the Hokey-Pokey, children will be encouraged to program their robots to dance to one of the new songs they’ve learned during the curriculum.</td>
</tr>
<tr>
<td>Lesson 4: What are Sensors (Part 1)?</td>
<td>Using our five sense to experience music and items from all of the cultures that make up the class</td>
<td>Children will dance alone, with a partner, and in a group. As students are dancing, ask them to think about how they are using their senses. Then afterwards, have a discussion about what they saw, felt, heard, touched, and tasted. Was one or two senses used more than another?</td>
</tr>
<tr>
<td>Lesson 5: What are Repeats?</td>
<td>Creating a dance phrase and being able to repeat it</td>
<td>Children will work with a partner or in a small group to create their own dance that has at least one part that repeats. Then, children will perform their dance in front of the class and point out which part they did more than one time.</td>
</tr>
<tr>
<td>Lesson 6: What are Sensors? (Part 2)</td>
<td>Using our five sense to experience food from all of the cultures that make up the class</td>
<td>Have a potluck for the class. Children will bring in food from their culture to share. Keep track of the ways that senses are used to experience other cultures.</td>
</tr>
<tr>
<td>Lesson 7: What are Ifs?</td>
<td>Generate questions and gather information</td>
<td>Students will research one dance (either by themselves, in pairs, or in groups) that they will want their robots to perform in Lesson 8. With the help of teachers, children will answer questions in their Engineering Design Journals.</td>
</tr>
</tbody>
</table>
Lesson 1: Sturdy Building

Powerful Idea: The Engineering Design Process

Overview:

Children use crafts and recycled materials to build a non-robotic vehicle that can transport a toy person. The powerful idea in Lesson 1 (building sturdily through the use of the engineering design process) will prove important to the success of the children’s robots in subsequent lessons and should be rearticulated and discussed during each activity.

<table>
<thead>
<tr>
<th>Prior Knowledge</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will understand that...</td>
<td>Students will be able to...</td>
</tr>
<tr>
<td>None, but prior experience building with arts and crafts or recycled materials is helpful.</td>
<td>Craft and recycled materials can fit together to form sturdy structures.</td>
</tr>
<tr>
<td></td>
<td>The engineering design process is useful for planning and guiding the creation of artifacts.</td>
</tr>
<tr>
<td></td>
<td>There are many different kinds of engineers.</td>
</tr>
</tbody>
</table>

Materials / resources:

- A variety of crafts and recycled materials for building and decorating
- Engineering Design Process poster*
- Engineering Design Journals*
- Pictures of naturally occurring and manmade objects
- Pictures of different vehicles
- Expert badges*
- Collaboration Webs (one per child)

*can be purchased through KinderLab Robotics, Inc.

Lesson 1 Vocabulary:

- **Circle** – a round shape with no edges
- **Cycle** – something that moves in a circle (i.e. the seasons, the Engineering Design Process)
- **Design** – a plan for a building or invention
- **Edge** – the border of a shape
- **Engineer** – someone who invents or improves things
- **Material** – something used to build or construct
- **Rectangle** – a shape with four sides, two pairs of sides with equal length
- **Structure** – a building or object made with different parts
- **Square** – a shape with four equal sides
- **Triangle** – a shape with three sides
- **Vehicle** – something used to carry and move people or things
Activity description

Explore Your Family History
Prior to this lesson, have students interview a parent, relative, or friend to find out about his/her cultural and religious background. What country is his/her family from? Does he/she speak any other languages? What religion is she/he? Later in this lesson, after creating non-robotic vehicles, students will decorate their vehicles to represent the person they interviewed.

How Many Dances Can We Think of? (5-10 min)
As a class, brainstorm all the dances that everyone knows and where they come from (or where you think they come from). Count how many dances the class knows of, as well as how many different places the dances come from. Which dance does the most number of students know? Is there a dance that only one or two students know about? It may be helpful to create a list that can be displayed throughout the robotic curriculum to be an inspiration to students as they learn about new dances.

Shapes of the Bus (5-10 min)
Ask children to draw a school bus or other vehicle in their Engineering Design Journals, and to identify different shapes they see making up the vehicle. As a class, make a big list of all the different shapes they noticed. Then, look at craft and recycled materials and ask children to identify the shapes they see and make another list. Compare the two lists as a class. What shapes do they have in common? How can we use materials in the classroom to build vehicles that look like the real ones? In this activity, children will work to identify and describe 2d shapes and practice comparing and contrasting.

Introduce the concepts and the task (10 min)
“Today we will be building vehicles, and we’re going to use a tool to help us make sure our structures are sturdy and work the way they are supposed to.” Discuss what an engineer is and introduce the steps of the engineering design process.

All about Engineers!
An engineer is anyone who invents or improves things (for instance, just about any object you see around you) or processes (such as methods) to solve problems or meet needs. Any human-made object you encounter in your daily life was influenced by engineers.

There are many different kinds of engineers including: biomedical engineers, aerospace engineers, computer engineers, and industrial engineers. For descriptions and further activity ideas, check out: http://www.eweeek.org/AboutEngineering/TypesEngineering.aspx and Engineering is Elementary from the Boston Museum of Science resources at http://www.eie.org/eie-curriculum/curriculum-units. Discuss as a class what these different kinds of engineers make and do.

Book Suggestion
Engineering the ABC’s, by Patty O’Brien Novak, answers questions about how everyday things work and how engineering relates to so many parts of a child’s daily life. In an entertaining way, this book shows how engineers shape our world.
When making projects, engineers follow a series of steps called the “Engineering Design Process.” It has just 5 steps: ASK, IMAGINE, PLAN, CREATE, TEST & IMPROVE, and SHARE. The Engineering Design Process is a cycle – there’s no official starting or ending point. You can begin at any step, move back and forth between steps, or repeat the cycle over and over!

Engineering Design Process song
(to the tune of “Twinkle, Twinkle”)
Ask and imagine, plan and create,
Test and improve and share what we make. (Repeat)

Jump for Engineers (5-10 min)

Look at a series of pictures of naturally occurring and manmade object. Student should jump if they think an engineer built it and stay seated if they don’t think so. Discuss why or why not. Some examples of pictures are bridges, dogs, medicine, computers, and food.

Think Like an Engineer (5 min)

Everyone in the class is going to start thinking like an engineer! That means looking at the purpose of objects and how they function. What are the different parts that make up the whole? What do they do? Why are they important? Show pictures of some different vehicles and ask these engineer’s questions.

Ex 1: Fire engine- What are the different parts of the fire engine? What function does each part have? Why is each part important?
Ex 2: Ice Cream truck- What function does each part have? What parts are the same as the fire engine? What parts are different? Why?

Individual/ Pair Work (20-25 min)

Students follow the steps of the engineering design process and use crafts and recycled materials to create a vehicle. They may use both structural and aesthetic materials. Students then decorate their non-robotic vehicles. Students should demonstrate to a teacher that their structures meet the following criteria as they are ready.

The criteria for a successful vehicle are that:
- It has wheels that roll
- It can be pushed between two places on the floor
- It has a place for the toy person to ride
- It remains intact when being handled and pushed along the floor.
- It is decorated to represent the history of the person the student interviewed
Note: Working Individually vs. Working in Pairs

Whether students work in pairs versus individually throughout this lesson is left up to the teachers’ discretion based on several factors. Materials may be limited, making pair work necessary. Teachers may also have goals for children’s social development that an explicit focus on sharing and teamwork throughout this curriculum can support. On the other hand, teamwork can be challenging at this age, so students may benefit from having their own materials and the option rather than the requirement to collaborate with others when it makes sense.

Postcard Home (5-10 min)

Children will recall the day’s activities. They will try to remember the vehicles they saw, the shapes they noticed, and what they liked the most. Children will fill out a blank postcard (in their Engineering Design Journals) where they will draw pictures describing their day for them to send home to their families. With help, they can try to label their pictures using vocabulary words (or dictate the words for the teacher to label). When postcards are complete, cut them out so that children can mail them or take them home.

Expert Badges

Children who finish building their vehicles and master all concepts quickly get to wear a badge that says “Engineering Expert.” Engineering Experts walk around and offer help to any classmates experiencing difficulties.

Collaboration Web

As children progress through the lesson, they will complete their collaboration webs. They will draw lines from their picture to the pictures of any classmates who give them help. If children say they didn’t receive any help, remind them to think of their partners, class Experts, or if they got any ideas by looking at another classmate’s project.

Technology Circle (10 min)

After finishing, students share their creations. They may do one or more of the following: explain the features of their creation, show how their creation moves, describe the features of their final design that make it sturdy, talk about what they found easy and difficult, and share anything they changed from their original plan. They may also want to share their postcards or their collaboration webs.

Free-play (10-20 min)

Provide opportunities for children to build freely with LEGO® and other arts and crafts materials. Encourage them to make sturdy structures. Can they make a structure that will stay together if it is dropped from ankle height? What about waist height?
Lesson 2: What Is a Robot?

Powerful Idea: Robots have Special Parts to Follow Instructions

Overview:
Children share ideas and learn about what robots are. Children will build and test their own robotic vehicles and decorate them with costumes from around the world. The powerful idea in Lesson 2 (robots have special parts to let them follow instructions) will prove important to the success of the children's robots in subsequent lessons.

<table>
<thead>
<tr>
<th>Prior Knowledge</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will understand that...</td>
<td>Students will be able to...</td>
</tr>
</tbody>
</table>
| • Craft and recycled materials can fit together to form sturdy structures.
 • The engineering design process is useful for planning and guiding the creation of structures.
 • Symbols (pictures, icons, words, etc.) can represent ideas or things.
 • Some ability to recognize letters or to read is helpful, but not required. | • **Robots** need moving parts, such as motors, to be able to perform behaviors specified by a **program**.
 • The robotic ‘brain’ has the programmed instructions that make the robot perform its behaviors. |
| | • Describe the components of a KIBO robot.
 • Scan a program onto the KIBO robot using the wooden blocks.
 • Build sturdy, robotic vehicles that move. |

Materials / resources:
- Pictures of different robots and non-robots
- One KIBO kit for each student/pair*
- A variety of craft and recycled materials for building and decorating
- Engineering Design Journals*
- KIBO Parts Poster*
- Expert badges*
- Collaboration webs (one per child)

Lesson 2 Vocabulary:
- **Automatic** – by itself, without help from a person
- **Function** – the reason a machine or robot was built
- **Main board** – the robot’s ‘brain’
- **Motor** – the part of a robot that makes it move
- **Robot** – a machine that can be programmed to do different things
- **Wheels** – the round parts of a vehicle that turn in circles and allow it to move
- **Wires** – the long, skinny tubes that connect all the robot’s parts
Activity description

Watch It, Learn It, Try It!

As a class, check out clips of some different kinds of cultural dances and then get up and try them! Later in the lesson, children will decorate their robots with costumes that they saw in the videos. Here are some starter ideas for dances from around the world (more ideas are in Appendix C):

Hula: Hula is a dance form accompanied by chant (oli) or song (mele). It was developed in the Hawaiian Islands by the Polynesians who originally settled there. The hula dramatizes or portrays the words of the oli or mele in a visual dance form. There are many sub-styles and types of hula. http://www.youtube.com/watch?v=TUvetLdm3Uk&feature=related

Lion Dance: The Lion Dance is a form of traditional dance in Chinese culture, in which performers mimic a lion's movements in a lion costume. The lion dance is often mistakenly referred to as a dragon dance. An easy way to tell the difference is that a lion is operated by two people, while a dragon needs many people. http://www.youtube.com/watch?v=teer4fyMiMA

Hava Nagila: “Hava Nagila” is a Hebrew folk song that has become a staple of band performers at Jewish weddings and Bar/Bat Mitzvahs. The Horah is a type of circle dance that is usually performed to Israeli folk songs, and sometimes to Jewish songs, typically to the music of Hava Nagila. http://www.youtube.com/watch?v=LgvKCucx00U&feature=results_main&playnext=1&list=PL7900844F132767

The Charleston: The Charleston was the dance that captured the spirit of the 1920s. It was danced with wild abandon by a new generation of independent young Americans, to the new hot jazz that was flooding the country. The dance began in Charleston, South Carolina, the city from which it takes its name. In 1923, The Charleston was featured in the Broadway show Runnin Wild, one of the biggest hits of the decade. http://www.youtube.com/watch?v=TRveIIe4uAs

Jump for Robots (5-10 min)

Show a variety of different pictures of robots and non-robots such as computers, cars, animals, foods, and famous robots such as Wall-E and R2D2. Additionally, it may be helpful to show toy robots (i.e. plush toys) and discuss how something can look like a robot or machine on the outside but not have any actual mechanical parts. To play this game, children jump up and down if they think the picture shown is of a robot. They stay standing still if they think it is not a robot. Later, make an “Is It a Robot?” chart putting these images in one of three categories: Robots, Maybe Robots, and Not Robots.

Graphing Class Responses (10 min)

Students jump (or make another movement) for statements they think are true and sit down for statements they think are false. As you go along, make a chart with True and False for each question along the horizontal axis and number of students along the vertical axis. Have students place a marker (sticker, symbol, etc.) in the “True” or “False” column. As a class, children will be able to read the graph in order to see whether there were more “True” or “False” responses for each question.

1. Robots are machines (TRUE).
2. All robots are made of the same materials (FALSE).
3. Robots must have moving parts (TRUE).
4. Robots can think by themselves (FALSE).
5. All robots look alike (FALSE).
6. Robots must be able to move around the room (FALSE).
7. Robots are operated using remote controls (FALSE).
8. People tell robots how to behave with a list of instructions called a program (TRUE).
9. Some robots can tell what is going on around them (TRUE).
 (Examples: sensing light, temperature, sound, or a touch.)
10. Robots are alive (FALSE).

Introduce the concepts and the task (10-15 min)

“Today we will be talking about what a robot is and learning about how to put the KIBO robot together. “ As a class, children discuss what they think a robot is and examples of robots they know of. Talk about the “Is it a Robot?” chart and define the characteristics of robots. It may be helpful to watch video clips of different types of robots in action such as home robots, space robots, factory robots, hospital robots, and child-made robots. Then, show a KIBO robot and introduces the robot’s key part and their functions with the help of the KIBO Parts poster. Finally, teach the Robot Parts Song and have students sing and dance along.

Parts of the KIBO Robot

- **Body**
- **Wheels**
- **Motor**
- **Light Output**
- **Sound Sensor**
- **Light Sensor**
- **Distance Sensor**

The Robot Parts Song

(to the tune of “Dry Bones”)
The wheels are connected to the motors,
The motors are connected to the body,
The engineers give it a program,
So move, robot, move!
Individual/ Pair Work (20-25 min)
Students work individually or in pairs to put the KIBO robot together. When attaching the different parts, they should make sure that the parts are attached sturdily and that they will not fall off. Also, students should experiment with putting two motors and two wheels on the side to create a vehicle, or putting one motor on top to create a kinetic sculpture. Once students have assembled KIBO, they should decorate their robots to look like it is wearing one of the costumes that they saw in the “What It, Learn It, Try It!” activity. When they think they have a working and decorated robot, students should bring it to a testing station where they upload the program “Begin, Forward, End” and run it. This test is to ensure that their robot follows the instruction properly and that it is sturdy. Teachers can help make sure the robots’ motors are properly oriented so that the motors turn as expected to make the robot go forward.

Note: Establishing Rules
It is important to establish rules or expectations for how students should treat each other’s materials, programs, and robots. Find a time for students to generate these group expectations. Students may be better able to imagine reasonable expectations after using the robots or programming interface once.

How-To Guide (5-10 min)
In the Engineering Design Journals, have students explain how to put together the KIBO robot by creating a series of drawings showing all the different robotic and non-robotic parts they used. Encourage students to use the new vocabulary words that they’ve learned to label the different parts, or have them dictate to a teacher who can write the labels.

Expert Badges
Children who finish building their vehicles and master all concepts quickly get to wear a badge that says “Robotics Expert.” Robotics Experts walk around and offer help to any classmates experiencing difficulties.

Collaboration Web
As children progress through the lesson, they will complete their collaboration webs. They will draw lines from their picture to the pictures of any classmates who give them help. If children say they didn't receive any help, remind them to think of their partners, class Experts, or if they got any ideas by looking at another classmate’s project.

Technology Circle (10 min)
Have the students share their creations with the rest of the class (or a small group). During this time, students can share the parts and features of their robot, share what they found easy or difficult, or share what makes their robot sturdy. What do they think will happen if they make a robot that is missing one of its pieces? Try it out!

Free-play (10-20 min)
Provide opportunities for children to build freely with KIBO parts and other building materials.
Lesson 3: What is Programming?

Powerful Idea: Control Flow by Sequencing and Instructions

Overview:
For this lesson, students choose the appropriate instructions and learn the importance of sequence as they program their robots to dance the Hokey-Pokey. This activity can be done with many other children’s songs. If you wish, think of other songs and how to program a robot to dance to the words. Be creative (the children will be):

<table>
<thead>
<tr>
<th>Prior Knowledge</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Symbols (pictures, icons, words, etc.) can represent ideas or things.</td>
<td>• Each block corresponds to a specific instruction.</td>
</tr>
<tr>
<td>• A robot is a machine that can act on its own once it receives proper instructions.</td>
<td>• A program is a sequence of instructions that is followed by a robot.</td>
</tr>
<tr>
<td>• KIBO robots have special parts (i.e. motors, wheels, and a “brain”).</td>
<td>• The order of the blocks dictates the order in which the robot executes the instructions.</td>
</tr>
<tr>
<td></td>
<td>• Point out or select the appropriate block corresponding to a planned robot action.</td>
</tr>
<tr>
<td></td>
<td>• Connect a series of blocks by fitting the pegs of one block into the hole of the following block.</td>
</tr>
<tr>
<td></td>
<td>• Scan a completed program onto the KIBO robot</td>
</tr>
<tr>
<td></td>
<td>• Fix the sequence if they see it doesn’t work (debugging).</td>
</tr>
</tbody>
</table>

Materials / resources:
• One KIBO kit for each student/pair
• KIBO Says game*
• KIBO programming blocks*
• Engineering Design Journals for planning*
• Collaboration webs (one per child)

Lesson 3 Vocabulary:
Barcode – a pattern of lines that are readable by machines like the KIBO robot
Instruction – a direction that a robot will listen to
Order – parts of a group arranged to make sense
Program – a set of instructions for a robot
Scanner – electronic device for reading printed barcodes
Sequence – the order of instructions that a robot will follow exactly
Activity description

Choreographing

How do we know what dance moves to do? Prior to the start of this lesson, talk to students about choreography. Choreography is the movements that are done by dancers. Explain to students that choreography is important to dancers because it gives them instructions on how to move, and it tells them what order to do the dance moves in. Then, have students get up and do the Macarena dance. Ask them how they knew what motions to do? Do they know of any other dances from around the world that have a specific order? Later in this lesson, children will program their KIBO robots to dance the Hokey Pokey, which is a dance that has special choreography. Explain to students that a program for a robot is like choreography for dancers--it tells them how and when to move.

KIBO Says (5-10 min)

This activity is played like the traditional “Simon Says” game in which students repeat an action if Simon says to do something. After briefly introducing each programming instruction and what it means, have the class stand up for this game. Hold up one big KIBO icon at a time and say “Programmer says to ________”. Go through each individual instruction a few times until the class seems to get it. Once the class is familiar with each instruction, the Programmer can start giving the class full programs to run through. Just like in the real Simon Says, the Programmer can try to be tricky! For example, if the Programmer forgets to give a Begin or End instruction, should the class still move?

Introduce the concepts and the task (10 min)

“Today we will give instructions, or programs, to our robots so they will do the Hokey-Pokey.” The whole class sings and dances the Hokey Pokey to make sure everyone remembers it. Conclude with a “robot verse”:

You put your robot in, you put your robot out,
You put your robot in, and you shake it all about.
You do the Hokey Pokey, and you turn yourself around.
And that’s what it’s all about. (Clap, clap.)

Show the different actions, or programming instructions, that KIBO can do. For this lesson, it is helpful to only show the Begin block, End block, blue (action) blocks, and orange (sound) blocks. Emphasize that every program must start with a Begin and finish with an End. Then, demonstrate how to connect the blocks and scan a program onto KIBO. Create a demo program to show the class.

What is a Program?

A program is a sequence of instructions that the robot acts out in order. Each instruction has a specific meaning, and the order of the instructions affects the robot’s overall actions.
Program the Teacher (5-10 min)
Using the KIBO Says game, children will work as a class to “program” their teacher to move from one part of the room to the other. Be silly! An example would be for the children to “program” their teacher to move from the front of the room to the library area by using the blocks “Begin,” “Forward,” “Forward,” Turn Left,” “Forward,” and “End.” The goal of this game is for students to practice sequencing as a class before working individually or in their small groups. Before the teacher-robot moves, children can make predictions about where the teacher-robot will end up. It may be helpful to let the children make mistakes in order to foster a discussion on problem-solving and sequencing.

Individual/ Pair Work (20-25 min)
Individually or in groups, students program their KIBOs to do the Hokey Pokey. When all groups are done, everyone does the Hokey Pokey with the robots! If students finish early, they can program their robots to dance a songs discussed during the “What It, Learn It, Try It” activity in Lesson 2.

Counting and Sequencing (5 min)
How many times did students use each programming block? What order did they put their blocks in? Children will keep track of the number of forward, backward, spin, shake, beep, and sing blocks they use for their Hokey Pokey programs. Did the whole class use the same number of each block?

Programming Charade (5-10 min)
Students will pair up. One child will make up a program using the KIBO blocks and act it out while the other partner guesses what the programming instructions are. Have student switch roles. Then, have them work together to come up with a program that they will “write” out (using stickers or cutouts of the KIBO blocks) to act out for the class.

Expert Badges
Children who finish early get to wear a badge that says “Programming Expert.” Programming Experts walk around and offer help to any classmates experiencing difficulties programming.

Collaboration Web
As children progress through the lesson, they will complete their collaboration webs. They will draw lines from their picture to the pictures of any classmates who give them help. If children say they didn’t receive any help, remind them to think of their partners, class Experts, or if they got any ideas by looking at another classmate’s project.

Technology Circle (10 min)
Students share their creations. They may do one or more of the following: explain the blocks they used for their program, talk about what they found easy and difficult, and share anything they changed from their original plan. If desired, video-record the class dancing the Hokey-Pokey with their robots to make a “music video” to send home to parents!

Free-play (10-20 min)
Provide opportunities for children to play with scanning different blocks and seeing what happens. As students are ready, prompt them to plan ahead about what they want the robot to do.
Lesson 4: What are Sensors? (Part 1)

Powerful Idea: Sensors

Overview:

Students will learn about sensors and program their robots to sing and dance to the “If You’re Happy and You Know It” song. Students will learn specifically about the sound sensor and the Wait for Clap block in this lesson. In Lesson 6, students will learn about the distance and light sensors.

Prior Knowledge

Students will understand that...
- Understand that humans and animals have **senses** organs.
- Understand that people and animals use information provided by their **senses** to help make decisions.
- A robot is a machine that can act on its own once it receives proper instructions.
- KIBO robots scan blocks to learn a program.
- Arranging and scanning blocks in a different order will result in a different program.

Objectives

Students will be able to...
- A robot can **sense** its surroundings with a sensor.
- There are different kinds of **sensors**.
- To use a sound **sensor** with KIBO.
- To program with the Wait For Clap Block.
- Compare and contrast human **sense** and robot **sensors**.

Materials / resources:

- One KIBO kit for each student/pair*
- KIBO Parts Bingo boards* (one per student) and plastic chips
- KIBO programming blocks*
- KIBO Sound Sensor
- Engineering Design Journals*
- Expert Badges*
- Collaboration Webs (one per child)

Lesson 4 Vocabulary:

Senses – The way humans and animals take in information about the surrounding environment. Humans have five senses - touch, taste, smell, sight, and hearing.

Sensor – a special part that helps machine take in information about the surrounding environment; there are sensors very much like human senses.
Activity description

Using Our Senses While Dancing

How do we use our senses when we dance by ourselves? How about when we dance with another person? How about when we dance in a group? Introduce different songs where children can dance alone, with a partner, and in a group (feel free to use new songs or ones from previous lessons; see Appendix C for ideas about other dances and songs from the world). As students are dancing, ask them to think about how they are using their senses. Then afterwards, have a discussion about what they saw, felt, heard, touched, and tasted. Was one or two senses used more than another?

KIBO Parts Bingo (10 min)

Review the different parts of KIBO by playing KIBO Parts Bingo. Give each student one BINGO board and some plastic chips. Have each student place one chip on the “free space.” Then, hold up one piece of KIBO at a time. Each student should find the picture of that piece on their BINGO board and cover it with a chip. Play until one student shouts “KIBO,” which is when they have four pictures in a row covered.

Sensor Walk (10-15 min)

Divide the class into two groups: Humans and Robots. Take the class for a walk around the school or neighborhood. As a class, keep a list of all the different things the humans and robots can sense and what part they used to sense it. For example, the human group may sense the sunlight with their eyes while students in the robot group would sense this with their light sensors. Children in the robot group do not need to be limited to KIBO sensors, but can think creatively about all kinds of sensors a robot might have. Upon returning to the classroom, compare and contrast the Human and Robot lists. Are there some things humans can sense but robots cannot? What about vice versa?

Introduce the concepts and the task (10-15 min)

Discuss examples of human senses and how these senses let us gather information about what’s going on around us, so that we can make decisions based on this information. Then explain to students that they need programming instructions to tell the robot what to do with the information from its sensors. Show the Wait for Clap block and create an example program together. Run the program, and have students discuss what the robot is doing. Then, show the distance and light sensors. Explain that these sensors are programmed with different blocks (Repeat and End Repeat blocks, and If and End If blocks). Explain that they will get to experiment with the other two sensors in a later lesson.

What is the Sound Sensor?

KIBO’s Sound Sensor can hear sounds, just like ears can. It is programmed using the Wait for Clap block.
Individual/ Pair Work (20-25 min)

The students add a sound sensor to their robot to help them dance to “If You’re Happy and You Know It.” Children program their robots to move in any direction during the lyrics “If You’re Happy and You Know it” and then wait until the robot hears a clap (representing the lyrics “Clap your Hands”). Students then select their favorite instructions to show that their robot is happy. Students can choose as few or as many blocks as they would like to put after the “Wait for Clap” block. If students finish early or want a challenge, they can program their robot to dance one of the cultural dances discussed in Lesson 2 (but make they incorporate the sound sensor).

Sensors in the World (5-10 min)

As a class, think about sensors that are in our everyday lives. Make a list of all the sensors the class can think of in the following places: bathroom, office building, classroom, and public transportation. Feel free to add another own category in addition to these suggestions. Then, count how many sensors that the class identified in each place, and compare. Why might one place have more sensors than another? Teachers can create a graph to represent the results if they’d like.

Expert Badges

Children who finish mastering all concepts quickly get to wear a badge that says “Sensor Expert.” Sensor Experts walk around and offer help troubleshooting to any classmates experiencing difficulties attaching their sensors or programming with sensors.

Collaboration Web

As children progress through the lesson, they will complete their collaboration webs. They will draw lines from their picture to the pictures of any classmates who give them help. If children say they didn’t receive any help, remind them to think of their partners, class Experts, or if they got any ideas by looking at another classmate’s project.

Technology Circle (10 min)

Students share their programs. They may do one or more of the following: show their programming blocks and point out where they decided to add the Wait for Clap block, demonstrate different ways to trigger the sound sensor (clapping, talking, etc.), and share things that were difficult to figure out.

Free-play (10-20 min)

Provide opportunities for children to experiment with the Wait for Clap block and the sound sensor. What happens when the sound sensor isn’t attached? What about if nothing is placed after the Wait For Clap block?
Lesson 5: What are Repeats?

Powerful Idea: Repeats (Loops and Numbers)

Overview:

Students will learn about a new instruction that makes the robot repeat other instructions infinitely or a given number of times. They use these new instructions to program their robots to move between two destinations on opposite ends of a “road” with a turn in it.

<table>
<thead>
<tr>
<th>Prior Knowledge</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will understand that...</td>
<td>Students will be able to...</td>
</tr>
</tbody>
</table>
| A robot is a machine that can act on its own once it receives proper instructions.
KIBO robots have modules
KIBO robots scan blocks to learn a program.
Arranging the same blocks in a different order will result in a different program. | An instruction or sequence of instructions may be modified to repeat.
Some programming instructions, like ‘Repeat,’ can be qualified with additional information. |
| | Recognize a situation that requires a looped program.
Make a program that loops.
Use number parameters to modify the number of times a loop runs. |

Materials / resources:

- One KIBO kit for each student/pair
- KIBO Says game*
- KIBO programming blocks and parameters
- Engineering Design Journals*
- Non-robotics building material
- Masking tape, to create different shaped path

Lesson 5 Vocabulary:

Loop – something that repeats over and over again

Parameter – a limit that a robot will follow

Pattern – a design or sequence that repeats

Repeat – to do something more than once
Activity description

Create a Dance!

Students will work with a partner or in a small group to create their own dance. Explain to students that they can choose whatever moves they want, but at least one part of the dance needs to be repeated. Then, have students perform their dance in front of the class and point out which part or parts they did more than one time.

KIBO Says or Program the Teacher (5-10 min)

Play “KIBO Says” or “Program the Teacher” (see Lesson 3 for instructions) for students to practice recognizing the KIBO programming icons and creating programs.

Patterns & Counting (5 min)

After showing a robot acting out a sample program that is a pattern, children will identify the repeating unit, count how many times it repeats, and (as a class) change the program so that it uses a repeat to accomplish the same outcome.

Introduce the concepts and the task (10-15 min)

Introduce the Repeat and End Repeat blocks. What does it mean to repeat something? Make a model repeating program to demonstrate the proper syntax. Emphasize that the robot only repeats the instructions in between the “Repeat” and the “End Repeat” blocks. Scan the following program to a KIBO robot and run it: Begin, Repeat Forever, Forward, End Repeat, End. Notice how the robot will not stop unless you press the button (to stop it). Introduce the Number Parameters (“Numbers”) and model how to add them to the repeating program so that it loops the given number of times before stopping. As a class, create and scan several sample Repeat Loop programs and see what the KIBO does! Make sure to try a few syntactically incorrect programs too!

What is a Repeat Loop?

Repeat and End Repeat are like the bread of a sandwich. The programming blocks put inside of them are like the filling. KIBO will only repeat commands that are placed inside of the Repeat Loop sandwich. Segments of the code placed outside of the sandwich will not be repeated.
Individual/ Pair Work (20-25 min)

Students explore a situation in which some but not all the instructions need to be repeated. The students program the robot to drive from one destination to another along different shaped roads, making the robot stop when it arrives. Some examples of shapes to create using masking tape are straight, “L” shaped, and square roads. Set up several roads, perhaps of different lengths, with one leg of each road being at least 2-3 “Forwards” long.

Note: Adapting the Challenge

Break the challenge into parts: first have students program their robots to drive along one part of their road before adding the turn and the second leg of the journey. Such adjustments can make a big difference for some students as using Repeats can be complex.

Toothbrush Exercise (5-10 min)

Have students think about the way they brush their teeth as a task that requires some repeating motions (like moving the toothbrush from left to right) and other motions that only happen once (like squeezing out toothpaste). Working in pairs, have students pretend that they are a robot that needs a program to brush their teeth. Using programming instructions (and made up instructions like “spit” and “rinse”), have them make up a program that uses repeats and act it out for a partner. Did they have the same program or different programs?

Expert Badges

Children who finish mastering all concepts quickly get to wear a badge that says “Repeat Expert.” Repeat Experts walk around and offer help troubleshooting to any classmates experiencing difficulties programming with repeats.

Collaboration Web

As children progress through the lesson, they will complete their collaboration webs. They will draw lines from their picture to the pictures of any classmates who give them help. If children say they didn't receive any help, remind them to think of their partners, class Experts, or if they got any ideas by looking at another classmate’s project.

Technology Circle (10 min)

Students share their programs and discuss how Repeats work, especially how order is important.

Free-play (10-20 min)

Students need time to explore the new instructions. They should build programs that use (or don’t use) them. In doing so, they will gain comfort with sequencing the blocks correctly, how the robot follows instructions before, between, or after the “Repeat” and “End Repeat” blocks, and when Repeats are helpful to use.
Lesson 6: What are Sensors? (Part 2)

Powerful Idea: Sensors

Overview:

Students will learn about the distance and light sensors and program their robot to travel along different roads using one of the sensors and the Repeat and End Repeat blocks.

<table>
<thead>
<tr>
<th>Prior Knowledge</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will understand that...</td>
<td>Students will be able to...</td>
</tr>
<tr>
<td>• Understand that humans and animals have sense organs.</td>
<td>• A robot can sense its surroundings with a sensor.</td>
</tr>
<tr>
<td>• Understand that people and animals use information provided by their senses to help make decisions.</td>
<td>• There are different kind of sensors.</td>
</tr>
<tr>
<td>• A robot is a machine that can act on its own once it receives proper instructions.</td>
<td>• A robot can react to collected data by changing its behavior.</td>
</tr>
<tr>
<td>• KIBO robots scan blocks to learn a program</td>
<td>• Certain instructions (like “Repeat”) can be modified with sensor data.</td>
</tr>
<tr>
<td>• Arranging and scanning blocks in a different order will result in a different program.</td>
<td>• To use a distance and light sensor with KIBO.</td>
</tr>
<tr>
<td></td>
<td>• Compare and contrast human senses and robot sensors.</td>
</tr>
</tbody>
</table>

Materials / resources:

- *My Five Senses* book by Aliki
- One KIBO kit for each student/pair*
- KIBO Blocks Bingo boards* (one per student) and plastic chips
- KIBO programming blocks*
- KIBO Distance and Light Sensors
- ruler
- Engineering Design Journals*
- Expert Badges*
- Collaboration Webs

Lesson 6 Vocabulary:

Senses – The way humans and animals take in information about the surrounding environment. Humans have five senses: touch, taste, smell, sight, and hearing.

Sensor – a special part that helps machine take in information about the surrounding environment; there are sensors are very much like human senses.
Activity description

All Around the World Potluck
Have a class potluck featuring foods, music, and materials from around the world. Children will bring in food and items that represent something about their cultural background to share with the class. Keep track of the different ways you use your five senses to experience the different cultures. What did they taste, smell, touch, hear, and see? What things were similar and what were different?

KIBO Blocks Bingo (10 min)
Review the different blocks that KIBO can be programmed with by playing KIBO Blocks Bingo. Give each student one BINGO board and some plastic chips. Have each student place one chip on the “free space.” Then, hold up one programming block at a time. Each student should find the picture of that block on their BINGO board and cover it with a chip. Play until one student shouts “KIBO,” which is when they have four pictures in a row covered.

My Five Senses (10-15 min)
Read the story *My Five Senses* by Aliki and have a discussion about when students might use each of their five senses. Then, in their Engineering Design Journals, have students choose one of the five senses and draw a picture of a situation in which they would use that sense. With help, they can try to use words to describe the situations (or dictate the words for the teacher to write).

Introduce the concepts and the task (10-15 min)
Review examples of human senses and how these senses let us gather information about what’s going on around us, so that we can make decisions based on this information. Explain to students that we need special programming instructions to tell the robot what to do with the information from its sensors. Show the Repeat and End Repeat blocks, which are now familiar, and the new Until Near/Until Far and the Until Light/Until Dark parameter cards. Create two example programs together, one which uses the distance sensor and one which uses the light sensor. Run the program, and have students discuss what the robot is doing.

What are the Distance and Light Sensors?
KIBO uses the Distance Sensor to see how near or far KIBO is from other objects. With Distance Parameters, the Distance Sensor can be used with Repeat Loops to control how KIBO moves.

KIBO’s Light Sensor can detect light in the room around it. If a flashlight is shining on KIBO, the light sensor will tell KIBO it is “bright.” If there are no lights shining on KIBO, the light sensor will tell KIBO it is “dark.”
Individual/Pair Work (20-25 min)

Students create programs using the distance or light sensor for their robots to travel along different paths. Place masking tape in different shapes (such as a straight line, “L” shape, and square) along the floor to create different paths for the KIBO robot. Students should choose one of the sensors (distance or light) and program it using the Repeat and End Repeat blocks, as well as the appropriate parameter, to stop at the end of each path. It may be helpful for students to start with the straight line path before moving onto a more complex path.

How Close? (5-10 min)

As a class, experiment with how close someone must be in order for the robot to sense its surrounding. Scan the following program onto a robot: Begin, Repeat Until Near, Shake, End Repeat, End. Start with the distance sensor and invite one student to be the tester and one student to be the measurer. Have the measurer take a ruler and measure 12 inches away from the robot. Then, after the robot’s program has started, have the tester position his or her hand at that mark and slowly move his or her hand closer to the distance sensor. When the robot stops shaking, have the measurer determine the distance that the hand must be in order for the robot to sense something is near. Repeat this activity with the sound and light sensors.

Expert Badges

Children who finish mastering all concepts quickly get to wear a badge that says “Sensor Expert.” Sensor Experts walk around and offer help troubleshooting to any classmates experiencing difficulties attaching their sensors or programming with sensors.

Collaboration Web

As children progress through the lesson, they will complete their collaboration webs. They will draw lines from their picture to the pictures of any classmates who give them help. If children say they didn’t receive any help, remind them to think of their partners, class Experts, or if they got any ideas by looking at another classmate’s project.

Technology Circle (10 min)

Students share their creations. They may do one or more of the following: explain the blocks they used, talk about what they found easy and difficult, and share anything they changed from their original plan.

Free-play (10-20 min)

Provide opportunities for children to program freely with KIBO using the Repeat Blocks and the light and distance sensors.
Lesson 7: What are “Ifs”?
Powerful Idea: Sensors and Branches

Overview:
Students program a robot vehicle to take different actions based on the state of a sensor.

<table>
<thead>
<tr>
<th>Prior Knowledge</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will understand that...</td>
<td>Students will be able to...</td>
</tr>
<tr>
<td>• The KIBO robot is a machine that can act on its own once it receives proper instructions.</td>
<td>• A robot can ‘choose’ between two sequences of instructions depending on the state of a sensor.</td>
</tr>
<tr>
<td>• KIBO robots have special parts (i.e. motors, wheels, and a “brain”). Some of these special parts are called “sensors.”</td>
<td>• Connect a light sensor to the robot.</td>
</tr>
<tr>
<td>• KIBO robots scan blocks to learn a program</td>
<td>• Identify a situation that needs a branched program.</td>
</tr>
<tr>
<td>• Arranging and scanning blocks in a different order will result in a different program.</td>
<td>• Make a program that uses a branch.</td>
</tr>
<tr>
<td>• Some instructions can be qualified with additional information.</td>
<td></td>
</tr>
</tbody>
</table>

Materials / resources:
- KIBO Says game*
- One robot for each child or pair
- KIBO Distance and Light sensors
- One flashlight per child or pair
- KIBO Programming Blocks
- “Home” and other destination icons
- Masking tape, to create “T” shaped road
- Engineering Design Journals *
- Collaboration Webs (one per child)

Lesson 7 Vocabulary:
Branched program – a program with two or more possible sequences
Conditional – only happens sometimes
Activity description

Preparing for the Final Project

Explain to students that later, they will be decorating and programming their robots to do a dance from around the world. For this activity, students will research one dance (either by themselves, in pairs, or in groups). With the help of teachers, children will answer the following questions in their Engineering Design Journals: 1) In what country did my dance originate? 2) What are three facts about this country? What does the flag look like? 3) Do people still practice this dance today? 4) What kind of music is my dance performed to? Is there a particular song, type of instrument, etc.? 5) Are there particular clothes or costumes worn during this dance? 6) Is this dance associated with a holiday, event, or religious practice?

KIBO Says or Program the Teacher (10 min)

Play “KIBO Says” or “Program the Teacher” (see Lesson 3 for instructions) for students to practice recognizing the KIBO programming icons and creating programs. If playing “Program the Teacher,” make sure to also create programs that use the Repeat and End Repeat blocks.

Red Light, Green Light (5-10 min)

In small groups, have students take turns being the “Traffic cop.” The Traffic cop gives out orders to the group such as “If green, go jump 3 times. If red, sit down.” The Traffic cop then holds up either a red or a green piece of paper, and the other students in the group must complete the instructions accordingly. Try the game as a class first, and once the children feel comfortable with it, allow them to break into smaller groups and try being the Traffic cop themselves.

Introduce the concepts and the task (10-15 min)

“In the programs that we have learned so far, the robot has only one choice of what instructions to do next. Today we will learn an instruction that gives the robot two choices. The robot uses a sensor to decide which set of instructions to follow each time the program is run.” Discuss situations in the real world where someone may have to a choice (such as if it is rainy out, I’ll bring an umbrella). Introduce the If and End-If blocks, as well as the Near/Far and Light/Dark parameters. Create the following program: Begin, If Near, Shake, End If, Sing, End. Demonstrate what happens when you do and do not put your hand in front of the sensor. Create another program using the light sensor and demonstrate the two situations, when you do and do not shine a light into the sensor.

What is an If Statement?

If Statements allow KIBO to make choices based on what it can sense, just like your students can! Use these four Parameters (below) with If Statements. Remember to attach the appropriate sensors!
Simon Says (5-10 min)

Play the traditional game of “Simon Says” to help the students gain familiarity with the thought process behind branches. For example, “Simon says, ‘If the lights are on, jump twice, (if not, stand on one foot).”

Individual/ Pair Work (20-25 min)

On a T shaped map on the floor, students will program their robot to drive home if it is dark and go to school if it is light. Once students have successfully created a program with the light sensor, students will program their robot to stop moving forward if they are at a stop light.

If Worksheet (5-10 min)

Students will complete a worksheet about their daily and weekly schedules. They will fill in the second half of an “If, then” statement such as “If it is Saturday, __________” in any way they want and draw a picture of the activity they’re describing.

Expert Badges

Children who finish mastering all concepts quickly get to wear a badge that says “If Expert.” If Experts walk around and offer help to any classmates experiencing difficulties attaching their sensors or programming with Ifs.

Collaboration Web

As children progress through the lesson, they will complete their collaboration webs. They will draw lines from their picture to the pictures of any classmates who give them help. If children say they didn’t receive any help, remind them to think of their partners, class Experts, or if they got any ideas by looking at another classmate’s project.

Technology Circle (10 min)

Students share the program they made, what it does, and anything they found easy, hard, or surprising during the activity. Children sometimes think that Ifs make the robot do one program or the other whenever the sensor is in that state rather than as a one-time decision-maker for which set of instructions the robot will follow. This is important to identify and clarify with demonstrations.

Free-play (10-20 min)

Let students explore building programs with the If blocks. This exploration gives them a chance to learn how to use the block in a program, think of situations that require it, and further understand how to use sensors.
Lesson 8: The “Dances From Around the World” Project

Overview:
Students will work alone, in pairs, or in groups to build and program a robot to demonstrate their understandings and ideas related to the robotics and programming concepts they have mastered as well as a cultural dance of their choice (which they researched in Lesson 7). During the course of this final project, students put to use all the concepts learned during previous lessons but transfer them to a new context. When possible, teachers should encourage the use of crafts and recycled materials. When projects are complete, there can be a showcase of student work for parents, siblings, and schoolmates.

Note: Breaking the Lesson into Parts
The work for the final project should be broken up into several sessions. It is up to the teacher when to complete each part of the project. Not all of the activities need to be completed during Robotics time. It is left up to the teacher’s discretion whether the students will build a new sturdy robot from scratch or will use the robots they build in earlier lessons.

Materials / resources:
- KIBO Says game (for review and reference displays)*
- One KIBO robot for each child or pair
- KIBO Programming Blocks
- A variety of crafts and recycled materials for building and decorating
- Books about dances from around the world (optional, see Appendix C)
- Engineering Design Journals*
- Collaboration Webs (one per child)

Activity description

🌞 KIBO Says or Program the Teacher
Play “KIBO Says” or “Program the Teacher” (see Lesson 3 for instructions) for students to practice recognizing the KIBO programming icons and creating programs.

🔧 Individual/ Pair Work
Children will work individually to plan, design, build, and program a final project from scratch. Children will be encouraged to use advanced topics such as sensors and repeats when programming their robots.
1. Using their skills from Lessons 1 and 2, each individual, pair, or group will build a sturdy robot and test it.
2. Children will use the facts they gathered in Lesson 7 and their programming skills in order to plan and create a program for their “dancer robot.” The robot’s program must represent the movements of the child’s or group’s chosen dance (this can be abstract, but they must be able to explain the connection). Once they have a program they are happy with, they should record it in their Engineering Design Journals, and an adult should check it.
3. Children will create a costume for their “dancer robots.” Encourage them to use a variety of arts and crafts materials to create their decorations. They can then use popsicle sticks, tape, and other materials (except glue) to attach their costumes to their robot. It is important that the children do not obstruct the robot’s scanner.

4. As a class, create a stage area where the robots can perform during the final project showcase.

Dances Around the World Ideas

There are a variety of ways students can come up with to have their robots represent a dance from around the world. As long as students are challenging themselves and being creative, they should be allowed to program their robots however they want. Some ideas for kids include:
- Have the robot start dancing when the music starts playing by programming with the sound sensor
- Use the distance sensor to stop or start dancing when near something/someone
- Have two groups work together to create programs for their robots to dance together

Invitations

Write out and mail invitations to your family inviting them to come to your final project presentation. Add illustrations and information describing your project.

Collaboration Web

As children progress through the lesson, they will complete their collaboration webs. They will draw lines from their picture to the pictures of any classmates who give them help. If children say they didn’t receive any help, remind them to think of their partners, class Experts, or if they got any ideas by looking at another classmate’s project.

Presentations

Students share:

a. The song/dance and culture they chose to study
b. the robot they made and how it represents that culture
c. why they chose the features they did for their robot,
d. the goal of their program and why they wanted it to do that / what it represents,
e. the final program they built, and
f. anything that was hard, easy, surprising, interesting, etc. about the process.
Appendix A: Materials

This curriculum uses the KIBO robotics kit, developed at the DevTech Research Group at Tufts University and commercially available through KinderLab Robotics, Inc. Through KinderLab Robotics, Inc. supplementary materials that are used throughout this curriculum are also available (www.shop.kinderlabrobotics.com). However, teachers can create their own versions of these materials (denoted with an asterisk (*)),

Robotics materials
- 1 KIBO robotics kit set per child, pair, or group
- Batteries (each KIBO runs on 4 AA batteries)

Art Materials
- Various art materials including paper, scissors, markers, tape, and recyclable materials (glue is not advised)

Teaching Materials
- Images for “Jump for Engineers” (Lesson 1)
- Images of vehicles for “Think Like an Engineer” (Lesson 1)
- Chart and images for “Jump for Robots” (Lesson 2)
- KIBO Says* game (or images of the blocks printed out largely on sturdy paper) (http://shop.kinderlabrobotics.com/KIBO-Says-Class-Programming-Game-TM-KIBO-SAYS.htm)
- KIBO Bingo*
- My Five Senses book by Aliki
- Engineer Licenses*
- Expert Badges*
- Assessment booklet for each student* (http://shop.kinderlabrobotics.com/Assessment-Packs-TM-ASSESSMENT.htm)
Appendix B: Positive Technological Development

For further information about the Positive Technological Development framework, please refer to the following two books written by Dr. Marina Umaschi Bers:

For academic publications on this topic, please visit the publications section of the DevTech Research Group’s website: http://ase.tufts.edu/devtech/publications/.

Personal Development Trajectory (figure taken from Bers, 2012)
Example Collaboration Web
Appendix C: Resources

Here are some suggested books to explore throughout this curriculum.

Folk Dances from Around the World
American, German, Italian, French – here's a great sampling of each dance using such tunes as Captain Jinks, Oh, Johnny!, Patty Cake Polka, Military Schottische, Sicilian Circle, and Varsouvienne. Includes a listing of national dance organizations in the U.S. and Canada. Includes music cd.

Sing and Dance Around the World
Have fun traveling around the world with this collection of music, dances, and activities from nine diverse countries. All pages are REPRODUCIBLE and each unit includes a song, the steps to a basic folk dance, a page of fun and interesting facts about the country, its people and traditions, and an activity. The included CD provides performance and accompaniment versions of the song to help facilitate both dancing and singing in your classroom.

Jingle Dancer
Jenna, a contemporary Muscogee (Creek) girl in Oklahoma, wants to honor a family tradition by jingle dancing at the next powwow. But where will she find enough jingles for her dress? An unusual, warm family story, beautifully evoked in Cornelius Van Wright and Ying-Hwa Hu's watercolor art.

The Story of Hula
With vivid, whimsical illustrations and lyrical writing, Carla Golembe shares the history, meaning, and spirit of hula. The words and pictures pair together in much the same way that the chants and movements of hula complement each other, and the accompanying read-along CD further immerses readers and listeners in the joy of the dance.

Lion Dancer
References

Acknowledgements

This curriculum was developed by integrating ideas developed by researchers at the DevTech Research Group at Tufts University under the direction of Dr. Marina Umaschi Bers. Generous funding was provided by the National Science Foundation (NSF Grant No. DRL-1118897, DRL-0735657).