MATH 61-02: WORKSHEET 1 (§1.1-1.2)

- (W1) Let $\mathcal{P}(X)$ denote the power set of a set X. Show that it is not in general true that $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$. On the other hand, give an example where they are equal.
- Answer. I'll give a counterexample for the first part. Let $A = \{a\}$ and $B = \{b\}$. Then $\{a, b\} \in \mathcal{P}(A \cup B)$ but it is not in either $\mathcal{P}(A)$ or $\mathcal{P}(B)$.

On the other hand, suppose A = [2] and B = [3]. Here $A \subseteq B$, so $A \cup B = B$. Then any subset of A is also a subset of B, so we have $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. Also, $A \cup B = B$. So we have $\mathcal{P}(A \cup B) = \mathcal{P}(B) = \mathcal{P}(A) \cup \mathcal{P}(B)$.

- (W2) For any natural number n, define A_n = (⁻¹/_n, ¹/_n), B_n = [n, n + ¹/_n), C_n = {x ∈ ℝ | x < n < x²}, and let A = {A_n}, B = {B_n}, C = {C_n} be the corresponding collections of sets, indexed over N.
 (a) On some number lines, sketch A_n, B_n, and C_n for n = 1, 2, 3.
 (b) Find ∪A and ∩A.
- Answer. (a) I won't draw these, but I'll say a bit about C_n . First, C_1 is the set of real numbers that satisfy $x < 1 < x^2$, and this is impossible—if a number is less than 1, then so is its square—so $C_1 = \emptyset$. Next, C_2 is the solutions to $x < 2 < x^2$. This means x < 2, and also $2 < x^2$ means $x > \sqrt{2}$. Putting these together we find $C_2 = (\sqrt{2}, 2)$. Likewise, $C_3 = (\sqrt{3}, 3)$.

(b) \mathcal{A} is a nested collection, whose first set is (-1, 1) and whose sets get smaller and smaller, squeezing down to zero. The union of the sets in \mathcal{A} is the open interval (-1, 1). The intersection of the sets in \mathcal{A} is $\{0\}$, because that one value is in every set (-1/n, 1/n), but no other positive number is less than 1/n for all n.

- (W3) Let our universal set be U = [6]. Let $A = \{1, 2, 4, 5\}, B = \{1, 3, 5, 6\}, C = \{4, 5\}, D = \{1, 2, 6\}, E = \{2, 3, 6\}$. Use these sets and parentheses, unions, intersections, and complements to express the following sets. (It is possible to create all six.) As an example, the set $\{2, 6\}$ is equal to $D \cap E$, among other possible expressions.
 - (a) $\{1, 4, 5\}$
 - (b) $\{2,4\}$
 - (c) $\{2\}$

Answer. Multiple answers are possible for each part, but here are some sample answers:

- (a) E^c
- (b) B^c
- (c) $(D \setminus B) \cap E$