MATH 61-02: WORKSHEET 2 (§1.3-1.7)

- (W1) In class, you have been learning the building blocks of logic. In this problem, we explore some of the *replacement rules* of propositional logic. These are steps that allow us to replace a logical sentence with an equivalent one, knowing that the truth value remains intact in the course of the replacement.¹
 - (a) One replacement rule says that we can replace $P \wedge (Q \vee R)$ with $(P \wedge Q) \vee (P \wedge R)$. Verify that these two statements are equivalent using a truth table.
 - (b) Another replacement rule says that $P \Leftrightarrow Q$ can be replaced by $(P \land Q) \lor (\sim P \land \sim Q)$. Verify that this is true through a truth table, and explain in words why this would be true.

Answer. (a)

P	Q	R	$P \wedge (Q \vee R)$	$(P \wedge Q) \vee (P \wedge R)$
T	Т	Т	T	T
T	Т	F	T	T
T	F	Т	T	T
T	F	F	F	F
F	Т	Т	F	F
F	Т	F	F	F
F	F	Т	F	F
F	F	F	F	F

- (b) The truth table has four rows, and the two expressions only come up true when P and Q are both true or both false. This replacement rule makes sense since the only combinations of truth values where $P \Leftrightarrow Q$ is true are those where P and Q have the same truth value. If both true, then $P \wedge Q$ is true. If both false, then $P \wedge Q$ is true.
- (W2) Calculus is about limits. However, you've probably never seen a formal definition. In this problem, we look at a mathematically quantified definition of the limit of a sequence.
 - (a) Let $(x_n) = x_1, x_2, \ldots$ be a sequence of real numbers. We call x the *limit* of the sequence (x_n) if the following condition holds:

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} \quad \text{s.t.} \quad \forall n > N, \quad |x_n - x| < \epsilon.$$

Parse this statement in English and give some kind of intuitive explanation as to what this definition means.

- (b) Using quantifiers, give the negation of the above statement.
- (c) This definition of a limit can be expanded to define the limit of a function: Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Then the precise mathematical meaning of $\lim_{x \to \infty} f(x) = L$ is

$$\forall \epsilon > 0, \quad \exists \delta > 0 \quad \text{s.t.} \quad |x - c| < \delta \implies |f(x) - L| < \epsilon.$$

Can you write down a similar expression for $\lim_{x\to\infty} f(x) = L$?

(d) Use quantifiers to express Fermat's Last Theorem: No integers a, b, c satisfy the equation $a^n + b^n = c^n$ for any integer exponent n greater than 2.

¹FYI, the rules discussed here are called distribution, material equivalence, material implication, and exportation, respectively.

Answer. (a) It says: for any positive ϵ , no matter how small, there's some threshold N such that for indices n bigger than the threshold, the difference between x_n and x is less than the tiny little ϵ . The idea is that I can force the x_n values to be as close as I want to the limit x just by waiting long enough in the sequence.

- (b) $\exists \epsilon > 0$ s.t. $\forall N \in \mathbb{N}, \exists n > N \text{ with } |x_n x| \ge \epsilon.$
- (c) $\forall \epsilon > 0$, $\exists M \in \mathbb{R}$ s.t. $\forall x > M$, $|f(x) L| < \epsilon$.
- (d) There are lots of ways to do this.

For instance: $\forall n \in \mathbb{N}$ s.t. n > 2, $\nexists a, b, c \in \mathbb{Z}$ s.t. $a^n + b^n = c^n$. Or: $\forall a, b, c \in \mathbb{Z}$, $\forall n \in \mathbb{N}$ s.t. n > 2, $a^n + b^n \neq c^n$.

(W3) In class, you saw the Sheffer stroke, a logical operator ("NAND") defined as follows:

P	\mathbf{Q}	$\mathbf{P}\uparrow\mathbf{Q}$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	Т

Recall that $P \uparrow P = \sim P$. Work out expressions for both $P \land Q$ and $P \lor Q$ using only P, Q, \uparrow , and parentheses.

Answer. One can verify that

$$P \wedge Q \quad \equiv \quad (P \uparrow Q) \uparrow (P \uparrow Q)$$

and

$$P \vee Q \equiv (P \uparrow P) \uparrow (Q \uparrow Q).$$