MATH 61-02: PRACTICE PROBLEMS FOR FINAL EXAM

- (FP1) The exclusive or operation, denoted by \oplus and sometimes known as XOR, is defined so that $P \oplus Q$ is true iff P is true or Q is true, but not both. Prove (through a truth table, or otherwise) that for any statements P, Q, R:
 - (a) $((P \oplus Q) \oplus R) \Leftrightarrow (P \oplus (Q \oplus R))$
 - (b) $(P \land (Q \oplus R)) \Leftrightarrow ((P \land Q) \oplus (P \land R))$

(Suggestion: first look at the expressions and analyze them to see what combination of P, Q, R is possible, then use a truth table to confirm your idea.)

- (FP2) Prove the following:

 - (a) $1 \cdot 2 + 2 \cdot 3 + \dots + n \cdot (n+1) = \frac{n(n+1)(n+2)}{3}$ for all $n \in \mathbb{N}$ (b) $1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} < 2 \frac{1}{n}$ for $n \ge 2$ (c) If A_1, A_2, \dots, A_n, B are sets $(n \ge 1)$, then $\bigcup_{i \in [n]} (A_i \setminus B) = (\bigcup_{i \in [n]} A_i) \setminus B$.
 - (d) Let F_n denote the *n*th term of the Fibonacci sequence (where $F_1 = 1, F_2 = 1$, and $F_k = F_{k-2} + F_{k-1} \quad \forall k \ge 3$). Show that $\forall n \in \mathbb{N}, F_1^2 + F_2^2 + \cdots + F_n^2 = F_n F_{n+1}$.
- (FP3) (a) For a fixed natural number $m \ge 2$, let's write \mathbb{Z}_m for the quotient space \mathbb{Z}/\equiv_m of equivalence classes mod m. Consider the map $f: \mathbb{Z}^n \to (\mathbb{Z}_m)^n$ given by taking the remainder of each coordinate mod m, so for instance if m = 4 and n = 3, we have f((4, 10, 2)) = (0, 2, 2). If A is a subset of \mathbb{Z}^n , how big must its cardinality be (in terms of m and n) in order to ensure that |f(A)| < |A|?
 - (b) The squares of an 8×8 grid are colored black or white. Let's use the term *L*-region for 5 squares arranged in an L, as shown in the picture (note orientation matters: the corner of the L must be in its lower left). Prove that no matter how we color the grid, there must be two distinct L-regions (partial overlap allowed) that are colored identically. See example below.

(FP4) Fix n, and for any function $f: [n] \to [n]$, define $N(f) := \prod_{i=1}^{n} (i - f(i))$.

- (a) If n = 5 and f is the constant map f(x) = 1, compute N(f).
- (b) Give necessary and sufficient conditions on f for $N(f) \neq 0$.
- (c) For n = 4, give an example of a bijection f with N(f) > 0.
- (d) (harder) If n is odd, prove that f is a bijection $\implies N(f)$ is even.

- (FP5) (a) I have 30 sugarcubes, and there are 10 coffee mugs lined up in a row. How many ways are there to distribute all of the sugarcubes into mugs?
 - (b) If I distribute the cubes randomly (making all distributions equally likely), what is the probability that some mug has at least four sugarcubes?
 - (c) 42 chairs are set up in a row for the Discrete Math garlic-eating contest. Only six people show up. In how may ways can the eaters be seated
 - (i) overall?
 - (ii) if they aren't allowed to sit in six consecutive seats?
 - (iii) if they refuse to sit next to each other and they aren't allowed to sit in the chairs on the ends of the row?
 - (iv) the eaters are allowed to sit anywhere they want (but still refuse to sit next to each other)?
- (FP6) Let A be a finite set with cardinality n.
 - (a) Explain why the number of relations on A is 2^{n^2} .
 - (b) For $A = \{1, 2\}$, there are sixteen relations on A. You can record them as directed graphs (with loops but no multi-edges) on two vertices. Write down all of the possible adjacency matrices.

- (c) Which matrix corresponds to the relation $R = \{(1, 1), (2, 1)\}$? Draw the corresponding digraph.
- (d) How many of the sixteen possible relations are symmetric? How many are anti-symmetric? How many are partial orders?
- (e) Now consider the general case, |A| = n. What is the probability that a random relation is symmetric? Anti-symmetric?
- (FP7) (a) Suppose that (X, \leq_1) and (Y, \leq_2) are posets. Show that $(X \times Y, \leq)$ is a poset where $(a, b) \leq (c, d)$ iff $a \leq_1 c$ and $b \leq_2 d$. We can call that the *product poset*.
 - (b) Give an example of a pair of comparable elements and a pair of non-comparable elements in the product poset if $X = \{1, 2, 5\}$, $Y = \{3, 6\}$ and both \leq_1 and \leq_2 are the standard less-than-or-equal relation on integers.
- (FP8) Let $f: X \to Y$ be a function, and let $S, T \subseteq X$ and $A, B \subseteq Y$. Furthermore, for $C \subseteq Y$ recall that $f^{-1}(C) = \{x \in X \mid f(x) \in C\}$. Prove that:
 - (a) $f(S \cup T) = f(S) \cup f(T)$.
 - (b) $f(S \cap T) \subseteq f(S) \cap f(T)$.
 - (c) If f is injective, then $f(S \cap T) = f(S) \cap f(T)$.
 - (d) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B).$
 - (e) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- (FP9) (a) Write out the quantified definitions. (For example, $A \subseteq B$ iff $\forall x \in A, x \in B$.)
 - (i) A relation R on X is reflexive/symmetric/transitive/antisymmetric iff...
 - (ii) A relation f from X to Y is a function iff... (Note that the notation for "there exists a unique" is "∃!".)
 - (iii) A function $f: X \to Y$ is injective/surjective iff...
 - (b) How would you prove a function is injective? How would you prove a function is surjective?
 - (c) If $f: X \to Y$ and $g: Y \to X$ satisfy $g \circ f = Id_X$, show that f is injective and g is surjective.
 - (d) Suppose you are given a bijection $f: X \to Y$. Give an explicit bijection $g: \mathcal{P}(X) \to \mathcal{P}(Y)$. (In other words, for a subset $A \subseteq X$, you should be able to write down g(A) in set-builder notation, using f.)

- (FP10) (a) Show that the relation \sim on \mathbb{N} by $a \sim b$ iff $\exists n \in \mathbb{N}$ such that $ab = n^2$ is an equivalence relation. (b) Prove that for $m \in \mathbb{N}$, we have $m \in [6]$ iff, when we break down m into its prime decomposition,
 - the exponent of 2 and the exponent of 3 are odd, while all the other exponents are even.
 - (c) Describe [16]. Can you describe in general what the equivalence class [N] looks like for an arbitrary $N \in \mathbb{N}$?
 - (d) Let $A = \mathbb{N}/\sim$ be the set of equivalence classes. Show that A is countably infinite.
- (FP11) The diagonalization proof that $|\mathcal{P}(X)| > |X|$ goes like this: suppose $f : X \to \mathcal{P}(X)$ is a bijection. Consider $S = \{x \in X : x \notin f(x)\}$. This is an element of $\mathcal{P}(X)$. Since f is a bijection, there must be some $s \in S$ such that f(s) = S. But then $s \in S$ and $s \notin S$ both lead to contradictions.

Study this construction as follows: let $X = \{a, b, c\}$ and give two examples of functions from X to $\mathcal{P}(X)$. (They won't be bijections, of course, since the power set has eight elements.) For each of your functions f, compute the set S defined above and verify that it is not in the image of f.

- (FP12) A graph G is called *bipartite* if V(G) can be partitioned into two sets S and T such that every edge of G is incident to one vertex in S and one vertex in T. A *complete bipartite graph* is a bipartite graph where every possible edge is present.
 - (a) For what values of n are K_n, C_n, W_n bipartite? (Recall that K_n is the complete graph on n vertices, C_n is the cycle on n vertices, and we'll write W_n for the "wheel" graph with n + 1 vertices, formed by connecting a central vertex to every vertex of a C_n .)
 - (b) Must bipartite graphs be simple?

vertex is called a *leaf*.)

- (c) A complete bipartite graph where |S| = m, |T| = n is denoted $K_{m,n}$. Draw a $K_{3,3}$ and a $K_{4,2}$. What are $|V(K_{m,n})|$ and $|E(K_{m,n})|$ for general m, n?
- (d) A *tree* is a connected graph with no cycles. Prove that trees are bipartite. (Begin with an example of a tree and figure out what S and T should be in your example.
- (e) (harder) Prove that a graph is bipartite if and only if it does not contain any odd cycles.
- (f) Suppose G is a graph with |V(G)| = 18. Explain steps to check if it is isomorphic to $K_{6,12}$.
- (FP13) (a) Prove by induction that a connected graph with n vertices must have at least n-1 edges. (b) Prove that a tree with at least one edge must contain at least 2 vertices of degree 1. (Such a
- (FP14) (a) State and explain how to use an adjacency matrix to check if a relation is transitive.
 - (b) For $n \ge 2$, let P_n be the path graph on n vertices (i.e., it's got the edges $v_1v_2, v_2v_3, \ldots, v_{n-1}v_n$). If A is its adjacency matrix, which entries of A^{n-2} are zero? (Try this with n = 3 and 4 to get started.)
- (FP15) (a) Let \mathcal{T}_5 be the set of trees with five vertices, and let \cong represent graph isomorphism. Fully describe the quotient space \mathcal{T}_5/\cong .
 - (b) Give a formula for the (i, j) entry of $(A \cdot B^{\intercal})^{\intercal}$.
 - (c) If n = 4, write down the elementary transposition matrix E_{12} and the elementary transposition matrix E_{24} . Verify that $E_{12}E_{24}$ is not a symmetric matrix, and that $(E_{12}E_{24})^{\intercal} = E_{24}E_{12}$.
 - (d) Draw two different-looking connected graphs on 5 vertices (with the vertices labeled cyclically clockwise) such that their adjacency matrices satisfy $E_{12}A_1E_{12} = A_2$.