ECE Senior Capstone Project

2016 Tech Notes

Blue Team Project: Synthetic Aperture Radar for Unmanned Aerial Vehicles

Profiling Techniques for Optimizing Synthetic Aperture Radar

(SAR) Image Formation

By Norihito Naka, ECE '16

Current existing implementations of the image
formation algorithm for UAV SARs take both
multiple days and over 15 Gigabytes of memory to
run: both the space and time complexity of running
MATLAB ®code, which exhaustively seeks to
sharpen a 3-dimensional image, is unreasonable in
its applications for defense. This note explores the
numerous methods of optimizing the algorithm
and the profiling tools used to measure the
performance improvements as compared to
previous iterations.

Background

In collaboration with MIT Lincoln Laboratories, the
Blue Team seeks to develop a robust, real-time,
framework that enables UAVs to sweep 2-dimensional
apertures to construct radar images that contain height
information. Lincoln Laboratories seeks to develop a
UAV SAR drone that can scan different topographies
using the PulsOn® board from TimeDomain® and
generate a 3-dimensional image. The existing
algorithm is written in MATLAB® and takes the back-
projected pulses and exhaustively determine the
appropriate phase off sets to decrease the distortion in
the image, measured using entropy.

Many of the problems with the current algorithm are
due to the fact that it applies brute force; in other
words, it takes the back-projected pulses and calculates
all possible entropy associated with a large range of
phase offsets. Entropy measures the distortion that
exists in an image and indicates the efficacy of the
phase error correction: smaller entropy values imply
better quality images. Through doing this computation,
the algorithm pinpoints the phase offset that results in
the lowest entropy and thereby focuses the three-

dimensional image, decreasing the noise introduced as
perturbations in the phase offsets.

In theory, this method may be a fine as it would
determine the true minimum entropy possible. In
practice, however, for any image of an aperture larger
than 50 by 50 by 50, the computation not only takes
days, but also requires greater than 15 Gigabytes of
memory. In the spirit of making an image formation
algorithm that will run within the order of hours while
computing on an average laptop device, optimization
for time and space is necessary.

This takes multiple forms: first, the Blue Team truly
implement an algorithm that closely matches the
mathematical derivation of minimum entropy
autofocus; this will fundamentally improve the
performance over the exhaustive search method
describe above. Next, through profiling and testing the
code, problematic areas are identified and refactored.
Finally, migrating much of the computation from
MATLAB® to C++ further memory and time
optimizations were recorded.

Optimizations

Space

One of the primary methods of optimizing the
algorithm was writing partial data to a file and writing
to disk instead of memory. This prevented the RAM
from being overloaded. Additionally, through selecting
smaller back projection slices and completing
computation of those before moving on to iterate
through the rest of the pulses also proved to be an
effective method of space optimization.

Department of Electrical and Computer Engineering, Tufts University

Senior Project Handbook: http://sites.tufts.edu/eeseniordesignhandbook/



Time

Central Processing Unit (CPU)

In MATLAB®, vectorization of the four-dimensional
data as well as preallocating space was crucial in saving
computation time. By distributing the processes of
precomputable values and reading from memory over
disk enabled the step-size algorithm to effectively
minimize the computations necessary, thereby
improving the time complexity of the new algorithm.

Graphics Processing Unit (GPU)

CUDA?" from NVIDIA has enabled further parallel
computing using the GPU. Since the GPU has multiple
blocks, each containing numerous threads, much of the
incremental computations can happen at the same
time. Figure 1 illustrates how each thread can be
allocated to compute one simple calculation and are
contained within blocks.

Grid

Block (0, 0) Block (1, 0) Block (2, 0)

il

Block (0, 1) Block (1, 1) Block (2, 1)

il

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0)

L]

Thread (0, 1) Thread (1, 1) Thread (2,.1)

|

Figure 1. Each GPU has a grid which contains a number of

blocks which in turn contain the threads. Each
thread is able to do a basic mathematical
computation.

Software Profiling

Execution Path Analysis (Native Profiling)

The native profiler in MATLAB® provided a
springboard off to base future iterations of code.
Examining the “Run and time” functionality of
MATLAB® and its outcomes lead to an understanding
that certain functions were taking more clock cycles
than others. In C and C++ the “get_time” functions
were called in order to simulate similar timing
capabilities.

Static Analysis (Algorithmic Profiling)
Static analysis was used in implementing the autofocus

algorithm from its mathematical model to concrete
code. Calculating the optimal decreases in entropy and
taking the appropriate step sizes down to the ideal
phase offset would therefore perform strictly faster than
the brute force method.

Results and Conclusion

Through the optimization methods outline above,
initial speed improvements using multithreads were
recorded. Moreover, these speed and memory
improvement were further enhanced through the
porting of the code from MATLAB® to C++

Through putting the minimum entropy gradient
descent algorithm on the GPU, the radar data obtained
from flying the UAV through a 2-dimensional aperture
yields a 3-dimentional image approximately
exponentially faster than execution times seen in the
brute force algorithm.

The tools laid out above help identify problems areas in
the Blue Team's code such that we could find better
methods of optimizing for space and time complexity
by over a factor of 50.

References

Chivers, I. & Sleightholme, J. (2015). An Introduction to
Algorithms and the Big O Notation. Switzerland: Springer
International Publishing. doi:10.1007/978-3-319-17701-
423

Florian Brandner, S. H. (2014). Criticality: static profiling for
real-time programs. Real-Time Systems, pp 377-410. doi:
10.1007/s11241-013-9196-y




Fuad, M. M., Deb, D. P., & Baek, J. (2013). Static Analysis,
Code Transformation and Runtime Profiling for Self-
healing. Journal of Computers, 8(5), 1127-1135. doi:
10.4304/jcp.8.5.1127-1135

Holzmann, G. . (2015). Assertive Testing [Reliable Code].
IEEE Software, 32(3), 12. doi:10.1109/MS.2015.60

Kim, J. W. (2014). Accelerating Matlab with GPUs. Morgan
Kaufmann, Boston, Pages 45-72. doi: 10.1016/B978-0-12-
408080-5.00003-1

Kukunas, J. (2015). Power and Performance. Morgan
Kaufmann, Pages 105-118. doi: 10.1016/B978-0-12-
800726-6.09995-X

Mili, A., & Tchier, F. (2015). Software Testing: Concepts and
Operations. John Wiley & Sons. Retrieved from
http://proquest.safaribooksonline.com/book/software-
engineering-and-development/software-
testing/9781119065593

Steven Homer, A. L. (2011). Computability and Complexity
Theory. New York: Springer US. doi:10.1007/978-1-4614-
0682-2

Youfeng Wu, Y.-F. L. (2005-09). Hardware-Software
Collaborative Techniques for Runtime Profiling and
Phase Transition Detection. Journal of Computer Science
and Technology , pp 665-675 . doi:10.1007/s11390-005-
0665-1




