ECE Senior Capstone Project

2016 Tech Notes

Rust Team: Real-time Acoustic Piano to MIDI

Designing Hardware Systems: Audio Engineering Case Study

By Daniel Pasternak, ECE '16

All hardware systems are designed for specific
applications. Hardware engineers consider the
various requirements and constraints of these
applications to create systems that is perform
better. In audio applications such as the Rust
Team's senior design capstone project, system
design choices were made to create a real time
machine that interfaces with analog and digital
devices.

Introduction

If you have ever purchased a computer, you may have
compared many different machines based on their
specifications. For example, if you were planning to
play games, you might purchase a computer with a
Graphics Processing Unit (GPU). Alternatively, if you
wanted a computer that was lightweight and had long
battery life, you might purchase a computer with a
special mobile Central Processing Unit (CPU). In both
cases, hardware engineers that designed these
computers made several system architecture decisions
to create machines that are better for their particular
uses.

Since computers are everywhere in the music world,
there are a huge number of specialized hardware
systems, each engineered for a very specific use. For
example, computers are present in synthesizers that
create sound, audio effects processors which in turn
create special effects or correct pitch and in controllers
for digital instruments, such as the Yamaha Disklavier
(a modern take on the player piano). In each of these
systems, hardware engineers made specific architecture
decisions, each with tradeoffs, to address specific
constraints. This note explores a few of these
constraints the Rust Team faced during our senior
design project, which focused on a device that captures
performances on an acoustic piano and digitizes them.

Background: What Does A Personal
Computer Do?

Personal computers are designed to run a wide range of
programs efficiently, and to be relatively easy to
program. For applications that are user driven, such as
word processing or web browsing, these computers are
generally effective. However, for applications requiring
large amounts of specific types of computation, they are
less effective. For example, rendering graphics in games
requires a large amount of vector math. Typical CPUs
do this very slowly, since their design requires
hundreds or thousands of operations to do this. A GPU
is designed for this kind of math, and may be able to do
it in a fraction of the time. On a range of benchmarks
with this type of math, GPUs averaged 2.5x faster than
GPUs (Lee et al., 2010).

What's Special About Music Processors?

In many audio processing applications, a device is
operating in real-time. For example, in the audio effects
processor, there is a constant input of audio from a
musician’s instrument, and a constant output of
modified instrument sounds. Since the input is never
ending, the processor never gets a break.

This introduces the first major design constraint — The
processor must act at least as fast as the stream of input
data. If it did not, queuing would occur, and there
would be latency, or lag between when the input signal
arrives and the output leaves, and the system would no
longer be real time.

Several techniques can be used to create a fast enough
system. One technique is to use a dedicated device — A
microprocessor running only one service (such as the
music effects processor) will be faster than one that has
to contend with multiple things running, such as a
program running on a PC with a Windows OS. The
other is to design hardware that can perform the

Department of Electrical and Computer Engineering, Tufts University

Senior Project Handbook: http://sites.tufts.edu/eeseniordesignhandbook/

operation in question very quickly. Since a music
processor is doing the same thing repeatedly, it only
needs to be able to do that one thing very fast. Hence,
special hardware should be selected for that step.

Example - Music Synthesis
The Input to a music synthesizer might be a Musical

Instrument Device Interface (MIDI) signal from a
device like a keyboard. The MIDI signal will tell the
computer what note and volume level to create. So how
is the sound actually created?

Since sound is a wave, it can be characterized either by
a wave through time, or by its frequency. Musicians do
this by referring to each note by its pitch. For example,
the middle C on a piano has a fundamental frequency
of about 261 Hz. Then, in addition to the fundamentals,
there are harmonics: other frequencies that result in the
unique sound between different instruments.

Therefore, to synthesize a sound, a whole bunch of
different frequencies in various volumes can be
selected. Then an operation known as the inverse
Fourier Transform can be used to transform these
frequencies into an audio signal (the time domain)
(Burk, n.d.). The FFT requires many multiply and add
operations on a long vector of data. This is something
that a traditional CPU performs very poorly.
Specialized hardware (such as digital signal processors)
will be faster in this case.

Senior Capstone Project: The Real Time
Acoustic Piano to MIDI Converter

The Rust Team's senior capstone project focused on a
device that attaches to a piano frame, and in real time,
transcribes any notes played on that piano to a MIDI
Stream. The result is that any acoustic piano can be
used either as a digital keyboard, or as in an input into
other Digital Music systems such as composition
software, learning software, or effects software.

In our project, the input to the system is a wave that is
generated by magnetic pickups (Figure 1). It is roughly
equivalent to the shape of the sound wave that you hear
when a note is played. The output is a digital signal - a
MIDI stream with information about the notes played
and their volumes. Like many other music devices —

Figure 1: The Rust Team utilized magnetic pickups to

convert vibrations of a piano string to an
electrical signal. Shown here is a proof of
concept version of our device using a guitar
pickup to sense a piano note.

ours is a real-time device. Ultimately, the two
operations our device performs are picking out note
velocity (loudness) and detecting note pitch. Here are
the hardware decisions we made for both of these
operations.

Note Velocity
Note velocity corresponds to how fast a key is pressed.

In the case of our system, it is the first derivative of
amplitude of the string’s vibration. Note velocity tells
you how loud the note will be at the moment it is
played, similar to how the maximum height of a balls
trajectory can be calculated from its initial speed. Since
our system measures displacement, in order to get
velocity, it is necessary to differentiate the input signal.
This can be done either in software, or in hardware. By
opting for cheap, specialized hardware, we free up the
microprocessor to focus on other work, resulting in a
faster system.

Note Pitch

There are several approaches to calculating note pitch.
One approach would be the reverse of the sound
synthesis process — performing the Fourier Transform
and picking out the fundamental frequency. However,
this approach is very computationally expensive,
especially for the number of notes on a piano. The

— -

Figure 2: An analog differentiator can be crafted for less than

a dollar using a resistor, an op-amp, and a

capacitor. At left is a circuit of a simple op-amp

differentiator. At right is a physical implementation.
other approach is to create a parallel system — many read from its group of sensors, breaking the job into
copies of the system working simultaneously (Figure 3). many small parts that can be done simultaneously,
In order to achieve the speed we needed for our system, reducing latency.
we opted for the highly parallel architecture, with one
copy of the sensor for each string. The system Conclusion
parallelism follows up to the microprocessor (we used By designing a hardware system properly, it is possible
an Arduino). The system consists of several Arduinos to can obtain a substantial improvement in
each running only our dedicated software — with no performance for relatively low cost. Just as adding a
other software to slow things down. Each needs only GPU to a personal computer frees up the CPU and

Serial Processing: One Processor for All Notes

Input

Output

Arduino Due
900000 "N 000000

All Notes

Parallel Processing: Several Processors for Several Notes Each

Figure 3:

Input Output
Arduino Due

Processor for —’-.—V

Several Notes

Arduino Due
Processor for . . >

Several Notes

Arduino Due
Processor for _.'._’

Several Notes

Each piano key is independent from the others, so
they can be handled in parallel. Multiple processors
are used to process different sets of keys (a parallel
system,).

improves graphics performance, adding special chips to
other machines can increase performance. In our senior
design project, the Rust Team architected a system
using parallelism, dedicated hardware, and specialized
circuits in order to achieve the real-time, very low
latency performance required by musicians.

References

Burk, P., Polansky, L., Repetto, D., Roberts, M., & Rockmore,
D. (n.d.). The Synthesis of Sound by Computer. Retrieved
from http://music.columbia.edu/cmc/MusicAndComputers/

Lee, V. W., Hammarlund, P., Singhal, R., Dubey, P., Kim, C.,
Chhugani, J., Chennupaty, S. (2010). Debunking the 100X
GPU vs. CPU myth. ACM SIGARCH Computer Architecture
News - ISCA '10, 38(3), 451. doi: 10.1145/1816038.1816021

