ECE Senior Capstone Project

2018 Tech Notes

Graph Clustering Toolkit for Biological Data Analytics

Graph Embedding for
Dimensionality Reduction

By Anuththari Gamage, ECE ‘18

Introduction

A graph is a powerful tool for modeling data and their
interreationships. Using this representation, data sets
can be embedded into Euclidean space, providing a
more intuitive geometric interpretation of abstract data
points. Additionally, such a graph embedding paves the
way for dimensionality reduction, which is embedding
high-dimensional data in a lower dimension so as to re-
tain only the most critical features of the dataset. Di-
mensionality reduction is at the heart of all machine
learning tasks, as it allows us to perform tasks such
as data clustering and visualization more efficiently.
This note explores some commonly used techniques for
graph embedding and their applications.

Graphs

A graph is a versatile tool for modeling phenomena
that we observe in a variety of contexts. The vertex
and edge structure of a graph is particularly useful for
modeling interactions between data points, which can
then be used in combination with graph theoretic and
machine learning methods to analyze the underlying
data and make meaningful inferences. One commonly
recognized example of a graph representation of data
is a social network [1]. The vertices, or nodes, in this
network each represent one person, and the edges be-
tween nodes represent a relationship between them,
such as being connected through a social media plat-
form. While this graph may seem simplistic, important
inferences about the underlying data can be made with

an accurate or nearly-accurate graph of this nature. For
example, we can categorize or cluster people according
to their political views using a graph representing each
person and their interrelationships with other people,
provided that we know the political affiliations of some
of the people in this network.

Figure 1: A graph with clustered identified (Image credits:
openi.nlm.nih.gov)

Embedding Graphs

A graph embedding is simply a vector representation of
the nodes of a graph in an arbitrary vector space. The
dimension of the vector space is generally chosen



according to the dataset at hand and our purpose in
embedding it. An extremely low dimensional repre-
sentation, such as vectors in R? or R?, is optimal for
visualizing data, since we can easily generate 2D and
3D plots. However, this loses much of the latent infor-
mation of the dataset. A high-dimensional representa-
tion, R3 for example, would preserve this information
leading to more accurate inferences from the embed-
dings, but this would present problems in scalability,
since large vectors are costly in both time and memory
required to process them.

Graph Embedding Techniques

Random Walks

In this approach, a graph embedding is generated by
constructing a matrix based on the nodes and edges
of a given graph. This matrix could be the adjacency
matrix, transition probability matrix, the graph Lapla-
cian or some other similar construction. Then, this
matrix is factorized to obtain a vector for each node,
usually by exploiting some property of the matrix that
characterizes the graph, such as its eigendecomposition.
Some factorization-based methods include Locally Lin-
ear Embedding (LLE) [2], Multidimensional Scaling
(MDS) [3], Laplacian Eigenmaps [4], and spectral clus-
tering [5]. This approach to graph embedding accounts
for the entire set of nodes and their interconnections
when generating the embedding, and therefore, they are
well-suited for preserving the global cluster structure of
the graph.

Random Walks

Graph embedding using random walks provides more
flexibility in choosing how much information we pre-
serve in the embedding. The parameters used in a ran-
dom walk can be changed easily to constrain the range
over which it collects information on the graph. These
methods generally involve performing multiple random
walks on the graph starting at each node. The nodes
encountered in each random walk are recorded and the
neighborhood of each node is characterized based on

these co-occurrence counts. This information is then
used to optimize randomly generated vector represen-
tations for each node such that the graph structure is
preserved. Some graph emebedding algorithms based
on random walks include node2vec [6], DeepWalk [7],
and Vec [8].

Deep Learning

Given the recent developments in neural networks,
graph embedding using deep learning techniques has
also been explored. Unlike the factorization meth-
ods, which computes the embeddings using linear func-
tions on the graph, deep learning methods allow us to
compute non-linear functions on the graphs, which can
lead to improved performance. However, deep learn-
ing based methods may be more difficult to set up than
factorization or random walks graph embedding meth-
ods. Some examples for deep learning graph embed-
ding methods include using an autoencoder to generate
a low-dimensional representation of the data (SDNE)
[9], using graph convolutional networks (GCN) [10],
and using deep neural networks for generating graph
representations (DNGR) [11].

Conclusion

Graph embedding is a powerful tool for analyzing large
data sets for machine learning tasks. A good graph em-
bedding retains the inherent geometric structure of the
data and reduces the dimensionality of the data, leading
to efficient data clustering and visualization. There are
multiple approaches to graph embedding which are used
for modeling a large variety of real-world networks, and
there is much future research to be conducted for opti-
mizing these methods for improved accuracy and speed.
For our Senior Design project, we explored a number
of different graph embedding and clustering algorithms,
and we developed our own algorithm for faster cluster-
ing use random walks [12]. We also developed an intu-
itive graphical user interface for using these algorithms
and testing them on various data sets to aid in future re-
search and to introduce this topic to students who are
interested in learning more about them.



References

[1]

(2]

[3]

[4]

[5]

[6]

Rongjing Xiang, Jennifer Neville, and Monica Ro-
gati, “Modeling relationship strength in online so-
cial networks,” in Proceedings of the 19th Interna-
tional Conference on World Wide Web, 2010.

Sam T Roweis and Lawrence K Saul, “Nonlinear
Dimension-ality Reduction by Locally Linear Em-
bedding,” Science, vol.290, 2000.

Josh B Tenenbaum, V de Silva, and J C Lang-
ford,”“A Global Geometric Framework for Nonlin-
ear Dimensionality Reduction,” Science, 2000.

Mikhail Belkin and Partha Niyogi, “Laplacian

[7]

[8]

[9]

Eigenmaps for Dimensionality Reduction and Data [10]

Representation,” Neural Computation, vol. 15, no.
6, pp. 13731396, 2003.

Ulrike Von Luxburg, “A tutorial on spectral cluster-

ing,” Statistics and Computing, vol. 17, no. 4, pp. [11]

395416, 2007.

Aditya Grover and Jure Leskovec, ‘“Node2Vec:

Scalable Fea-ture Learning for Networks,” Proceed- [12]

ings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
2016.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena,
“DeepWalk:online learning of social representa-
tions,” Proceedings of the 20th ACM SIGKDD In-
ternational Conference on Knowledge Discovery
and Data Mining, 2014.

Weicong Ding, Christy Lin, and Prakash Ish-
war, Node Embed-ding via Word Embedding for
Network Community Discovery,’pp. 110, 2016.

Daixin Wang, Peng Cui, and Wenwu Zhu, “Struc-
tural DeepNetwork Embedding,” in Proceedings of
the 22nd ACMSIGKDD International Conference
on Knowledge Discoveryand Data Mining - KDD,
2016.

T. N. Kipf and M. Welling, “Semi-
Supervised Classificationwith Graph Convolu-
tional Networks,” ArXiv e-prints, Sept.2016,
https://arxiv.org/abs/1609.02907.

Shaosheng Cao, Wei Lu, and Qiongkai Xu,“Deep
neural networks for learning graph representations,”
2016, AAAI Conference on Artificial Intelligence.

Brian Rappaport, Anuththari Gamage, and
Shuchin Aeron, “Faster Clustering via Non-
Backtracking Random Walks,” August 2017,
http://arxiv.org/abs/1708.07967.



