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Abstract 
The Kalman Filter is a powerful data fusion 
algorithm that attempts to predict the next state 
of a system (e.g. an objects position or 
temperature). This article will provide a high 
level overview, with the aim to describe the 
motivation and theory behind Kalman filtering in 
an intuitive way.  
 
Introduction 
The Kalman filter is a recursive estimation 
algorithm that attempts to predict the next state 
of a system by combining information in the 
presence of noise. Given any dynamic system 
that takes in uncertain data, the Kalman filter 
can be used to make an educated guess about 
what the system is going to do next (Babb). The 
resulting prediction will be more accurate than 
the estimate found from any one source alone, 
as it takes into account all indirect 
measurements, as well as the affect of control 
inputs and external factors to make its final 
estimation. The combination of this data results 
in a powerful prediction tool that has many 
important applications in modern technology. 
From vehicle navigation, to signal processing, 
to economics, the Kalman filter can be used to 
fuse data in any system that contains 
uncertainty. This article will focus on using the 
filter as a means of optimizing position data, 
such as from a GPS, to most accurately know 
the location of an object of interest. 
 
Automated Car Example 
The theory behind how the Kalman filter works 
is best explained with a running example.  
 
 
 
 
 

Say we are building an autonomous car to 
travel in a straight line 100m and it must finish 
within 2m of the finish line.  
 
 
A Kalman filter can be used here to most 
accurately measure the cars position so that it 
knows when to stop. The car is equipped with a 
GPS sensor that directly measures the car’s 
position, but this measurement is noisy and can 
only be trusted to ±5m. The model assumes the 
only input to the car is the gas pedal, which 
changes the car’s velocity. The whole system 
has additional noise caused by external factors 
like wind or wheel slipping that will add to the 
uncertainty in the cars position. Now back to 
the example, the GPS measurement on its own 
will not be accurate enough to pass the test, but 
this measurement can be greatly improved by 
combining other indirect data sources about the 
cars position. In this case, we have a 
measurement of the acceleration of the car 
because we know its input, the throttle. The 
position can then be calculated by taking its 
second derivative. Again, this calculation also 
contains noise and will not produce a position 
estimate accurate enough to stay within the 
threshold. For this example the Kalman filter is 
applied only to the GPS measurement and the 
throttle input, but a real system could have 
hundreds of sensor measurements to be 
combined. 
 
Theory 
The Kalman filter works in a two-step process: 
a prediction step, and an update step.  
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The prediction step produces an estimate 
based on the current state variables, and the 
update step adjusts this estimate based on 
measurements from the system. In the 
automated car example, we would create a 
mathematical model of the cars position, and 
then send the input (acceleration from throttle) 
through to create an initial guess. An overview 
of this system can be seen in Figure 1. The 
information from each of these steps is crucial 
for the filter to work.  
 
 
 

 
Without an estimation step, the prediction will 
be noisy as the measurements are the only 
data we have. If there is no measurement data 
the prediction will drift away from the true value  
because small errors in position are continually 
fed back into the model.  
 
 
 
 
 
 
 
 

 
Figure 1: Kalman Filter Overview 
 
In the implementation of the vanilla Kalman 
filter, noise is modeled as  Gaussian distributed 
random variables. This is an important 
assumption, allowing the algorithm to make 
estimations based on the average properties of 
the noise. A Gaussian random variable models 
the error in measurement as a classic bell 
curve centered on zero. It is highly likely that 
the measurement is off by a smaller amount 
(close to zero), and not as likely that the 
measurement error is something further away 
from zero. This does not mean that the 
magnitude of the noise is small necessarily, but 
the majority of the noise will be centered 
around zero. In the car example, there are 
three important pieces of data all with their own 
mean and variance: the initial state estimate, 
the predicted state estimate, and the GPS 
measurement. The initial state estimate is put 
through the mathematical model to get a 
predicted state estimate. The GPS 
measurement is then taken and these two 
probability functions are multiplied together to 
produce an optimal state estimate.  

 
This exploits a key property of Gaussian 
functions; the product of two Gaussian 
functions is another Gaussian function 
(Faragher). The output of the filter is then found 
by scaling the probability density function and 
taking the mean, and just like that we have 
found an optimized estimate of the position.  
The Kalman filter also introduces an important 
scaling factor called the Kalman gain. The gain 
changes the weights of the prediction estimate 
and the measurements from the system. If it is 
known that a measurement will contain a lot of 
noise, that data will carry less weight i.e. have 
a smaller effect on the output, in the final state 
estimate and vice versa. Going back to the car 
example, if the velocity of the car is high then it 
is likely that the GPS data can be weighed less 
due to a decrease in its reliability at high 
speeds. The weights are calculated from each 
covariance matrix, which is a measure of the 
uncertainty of the prediction of the system’s 
state. Then, the gain is calculated each 
iteration to minimize the covariance of the final 
state estimate. The resulting output will be the 
most accurate state prediction for the given set 
of data. Another important property of the 

	
	

	
	



	 	 	 	 	 		
	

Kalman  
 
 
gain, K, is that it is updated in real time. The 
beauty of this is that these calculations only 
require data from the previous step, so position 
updates come very quickly and are relatively 
cheap computationally. 
 
Application 
In our senior project we used a Kalman filter in 
an autonomous drone project that can track 
and record an athlete during a sports game 
using computer vision and a radio frequency 
transmitter/receiver system. The Kalman filter 
was an integral part of the drone localization, 
as well as object tracking in the computer 
vision module. The project aimed to provide 
high quality game footage in an inexpensive, 
easy to use package. Because the drone flies 
autonomously above the sports game, it needs 
to know where it is in space at all times. This is 
where the Kalman filter comes in. Similar to the 
car example, the drone itself has a GPS, 
accelerometers, a lidar detector (for altitude), 
as well as a computer vision system that uses 
anchor points in the corners of the field to feed 
position data to the drone. The Kalman filter 
combines all of these measurements and form 
a best guess of where the drone is relative to 
the player and its surroundings. After much 
experimentation and optimization a Kalman 
filter was built from scratch and the algorithm 
allowed successful and safe flight as well as 
more accurate object tracking. 
 
Conclusion 
 The Kalman filter has been in use for 
more than 60 years, and still today remains an 
immensely important algorithm in many 
applications in engineering and beyond. Any 
system that handles noisy data and can be 
approximated can benefit from the use of a 
Kalman filter. Additionally, because it only 
requires data from the previous state, it is a 
very fast algorithm to implement and does not 
require a lot of computational power. It is for 
these reasons that the Kalman filter has gained 

so much popularity and has proven so useful 
since its creation.  
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