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Abstract 
This article will discuss the purpose of 3D geometry 
used in computer vision (CV) systems along with 
different issues that arise in CV systems and their 3-
D geometry solutions counterparts. This article will 
also touch upon how 3-D geometry and coordinate 
transforms are applied to real examples along with 
how they are used in my senior design project.  
 
Introduction 

The way humans see and perceive three-
dimensional objects is with such ease that it does 
not even register in a human’s mind that anything 
out of the ordinary is happening. Computer vision’s 
main purpose is replicate how humans detect these 
objects. “Researchers in computer vision have been 
developing [ ] mathematical techniques for 
recovering the three-dimensional shape and 
appearance of objects in imagery.” (Szeliski, 3) Yet, 
computer vision hardly compares to human sight, 
which begs the question of why is vision so hard for 
a computer to replicate? This answer lies in the fact 
that “we seek to recover some unknowns given 
insufficient information to fully specify the 
solution.” (Szeliski, 3) Using the computer, we are 
attempting to rebuild 3-D reality with 2-D imaging. 
The best solutions for computer vision therefore 
start with understanding three-dimensional 
geometry and how this can map into two-
dimensional geometry and vice versa. With this lies 
the basis of all computer vision: multi-sensor three-
dimensional geometry.  
  
Problems and Solutions 
Matching Stereo Images:  
The basis of 3-D geometry starts with the simple 
problem of correspondence. That is for two images 
taken from two cameras, which pixel in one image 
lines up with the pixel in the other? In the simplest 
case in which the cameras are rectified, the two 
cameras taking the pictures line up on the same 
plane and do not use any rotation to map the left set 

of pixels to the right set. The solution to finding 
which pixel in the right image matches a pixel in the 
left image starts with finding the distance between a 
point in the left image minus a point in the right 
image, called the disparity (XL-XR). The 
corresponding point in a right image given a point 
in the left image must lie on the same scanline, 
meaning the vertical distance y for the point in the 
left image is the same as the vertical distance y for 
the point in the right image. This is called the 
epipolar constraint.  

To determine the true correspondence point 
in the right image for the point in the left image; 
constraints are placed on the problem to help narrow 
down the exact pixel. First is the Cheirality 
Constraint: XL ≥ XR. If XL < XR, this would make a 
negative disparity, meaning the object we are 
looking at would be behind the camera, which is 
clearly not possible. Next is the Maximum Disparity 
Constraint; this enforces a minimum distance from 
the camera to the surface being viewed. Following 
is the Uniqueness Constraint; if XL and XR are a 
match, there are no other points in the right image 
that match with that specific point in the left image 
and vice versa. Finally, the Ordering Constraint; if 
XL1 and XR1 are a match and XL2 is less than XL1, the 
corresponding matching point of XL2 = XR2, must be 
less than XR1. (Birchfield, 626) 
  Once the constraints are laid out, the actual 
algorithm to determining which pixel from one 
image matches the other can be written. The most 
basic algorithm is known as the Block Matching 
Algorithm. “Block matching is an area-based 
[solution] that relies upon statistical correlation 
between local intensity regions. For each pixel (x,y)  
 
 
in the left image, the right image is searched for the 
best match among all possible disparities.” 
(Birchfield, 629) The best disparity is the one that 
gives the lowest sum of dissimilarities over a 
window (WxW) around the pixel. The algorithm 
keeps track of the best disparity so far and the sum 
of dissimilarities (the score) of that current best 
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disparity. This is the most basic algorithm for stereo 
matching; however, other solutions improve running 
time and use Block Matching as the basis for a 
faster and more efficient solution. 

However, the two cameras are not  
rectified. The algorithm for stereo matching will 
become more or less unusable and a new algorithm 
must be implemented that takes into account 
rotations to solve 3-D geometry and coordinate 
transformation problems that arise. 
 
Rotations in 3-D Space: 
Understanding any rotation is beginning with 
knowing the rotation matrix R. A rotation matrix 
takes a set of defined axis, and rotates them a certain 
amount to define a new set of axis pointing in a new 
direction. Imagine a typical x-axis and y-axis 
defined on a sheet of paper where the origin is 
bottom left corner, the y-axis is the long side of the 
paper straight up and the x-axis lies on the short side 
of the paper to the right. Now rotate the entire sheet 
of paper 45 degrees clockwise. How does one define 
where the axis lies with respect to the old axis? This 
is what rotation matrices do. “A rotation is a linear 
transformation R, that fixes the origin, preserves the 
length of vectors, and preserves the orientation of 
bases.” (Heard, 7)  Diving deeper into the math of 
matrices, it is proven that the set of all eigenvectors 
corresponding to the eigenvalue of R, which is equal 
to one, forms the axis of rotation. As a result, the 
simplest way to apply R is using Plane rotations.  

In Plane rotations, let the vector represented 
as coordinates (x,y) be a complex number 
𝑥 + 𝑖𝑦 = 𝑥 + 𝑦 ∗ 𝑒𝑖𝜃; then, a counterclockwise 
rotation would shift the phase by some angle ϕ, 
making the rotated vector be 𝑥 + 𝑦 ∗ 𝑒!(!!!). This 
vector in rectangular coordinates is 𝑥 ∗ 𝑐𝑜𝑠𝜃 − 𝑦 ∗
𝑠𝑖𝑛𝜃 + 𝑖(𝑥 ∗ 𝑠𝑖𝑛𝜃 + 𝑦 ∗ 𝑐𝑜𝑠𝜃) (Heard, 8). This 
gives rise to the three basic rotation matrices in x,y, 
and z space.  
 
 
 
These matrices represent the rotation by angle θ 
about the x,y,z axes respectively. 

 
(Heard, 8) 

The general rotation operator is thus defined by N, a 
matrix given, and an angle θ to be 𝑅 = 𝐼 +
𝑠𝑖𝑛𝜃𝑁 + 1− 𝑐𝑜𝑠𝜃 𝑁! (Heard, 10).  

Rotations and the rotation matrix can be 
parameterized in many different ways, each for 
unique purposes. For example, the Euler angle 
parameterization, made up of three intermediate 
rotations, is used in aeronautics and astronautics 
where the three intermediate rotations are called 
yaw, pitch, and roll. These define which way an air 
vehicle is rotating. The list of parameterization of 3-
D rotations for specific applications also includes 
quaternions, which is the best parameterization for 
computer vision purposes.  

 
Example 
Determining Human Height: 
While many methods exist to determine human 
height in images, the solution below uses coordinate 
transformations and 3-D geometry, which does not 
need a real reference plane, and allows the camera 
to be easily rotated or translated while maintaining 
important information obtained from the previous 
position of the camera. The base of this solution 
uses the intrinsic parameters of the camera to 
“transform the image coordinate system to the 
camera reference frame.” (Zhou, 718) The two other 
big factors that go into this are the angle between 
the camera’s optical center and ground and the 
height of the camera from the ground.  

 
 
 
The first coordinates to determine before  

beginning a coordinate transformation are the height 
of the person and the distance from the camera that 
they stand.  

 
When the camera’s optical axis is parallel to 

the ground and the person is perpendicular to the 
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ground, TB in the figure below represents the 
person in the view of the camera, H is the height, D 
is the distance between the camera and the person, 
and tb is the image of the person TB on the imaging 
plane.  

 
(Zhou, 719). 

Letting the optical axis of the camera be the z-axis, 
the points of t and b are shown above. Then by 
using similar triangles theorem, the height of the 
person is  
H = h!(1−

!!
!!
), with hc as the height of the camera. 

To find the distance between the camera and the 
person (Df), the computation is as follows: 𝐷! =

!!
!!

 
(Zhou, 719).  
 Once the height and distance are found, the 
next step is to determine the three-dimensional 
coordinates of t and b in the camera reference. This 
is not possible directly from the image; thus, where 
coordinate transformations come into the equation.  
The intrinsic parameters of the camera are necessary 
for coordinate transforms because they “establish 
the relationship between the points in the camera 
reference frame and the pixel coordinates of the 
points on the images captured from the camera.” 
(Zhou, 720)  
 
 
 
 
In the image frame of reference, t coordinates are 
denoted as (ut,vt); so the coordinates in the camera 
reference frame for t, (x1,y1,1), as  
 
 
estimated by:  

  
(Zhou, 720) 

Where A is the intrinsic parameter (intrinsic 
parameters are characteristics of the specific camera 
used) matrix given by: 

 

 
(Zhou, 720) 

where fx and fy are the focal lengths in the x and y 
direction and u0 and v0 are the principal points in the 
x and y direction. A-1 can also be used to compute 
the coordinates of b in exactly the same manner it 
was used to find the coordinates of t. 
 This solution is given based on the idea that 
there is no rotation on the camera. Given that the 
camera is not parallel with the ground, there exists 
an angle β between the optical axis and ground. In 
order to use the coordinate transformations above, β 
must be taken into account in order to rotate the 
current reference frame to the standard camera 
coordinate system. The rotation matrix R is used in 
the below transformation in order to adjust the 
rotated camera to lessen the angle β. Refer to the 
Rx(θ) as R.   
 
 
R is then used for the rotated transformation below 
to adjust the coordinates.  

 
(Zhou, 720) 

The coordinates achieved from the above equation 
are normalized in the z-axis. After these two 
transformations, the normalized three-dimensional 
coordinates exist for t and b. As long as the 
camera’s height, hc, is known, then these three 
pieces of information is all that is needed to 
determine a person’s height. The height of the 
camera can then be estimated by putting a reference 
object with a known height in the front of the 
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camera, hr. The equation then to estimate hc is as 
follows:  

(Zhou, 721). 
 
Application 
RF Tracking UAV for Sports Video 
Capturing: 
The overarching reason for understanding 3-D 
geometry at its core along with different 
applications is to be able to apply it to my senior 
design project. My senior design project is to track 
an athlete and their movements during a sports 
game using an autonomous drone. While there are 
several different subsystems that are required to 
work to achieve this goal, coordinate 
transformations and rotational matrices are essential 
when finding the object of interest in the video 
cameras’ frame. The first step in identifying that a 
certain set of pixels in our image maps to the person 
we are looking for on the field below was to 
understand and map where the camera was in terms 
of the fields point of view. Imagine you are a bug 
on the middle of the Tufts lacrosse field, Bello 
Field. You look up and notice a camera above you, 
the camera has a GPS tracking system embedded in 
it so the camera knows where itself is in the world 
and thus the camera knows where is it relative to the 
field, but you as a bug have no GPS. How do you 
figure out where the camera is in terms of where 
you are?  
 
To do this, you must find a rotation matrix that 
takes the camera’s coordinates and rotates  
 
them to your coordinates. This was exactly the first 
step my group took when tackling this problem.  

Once we could map the camera on the 
field’s plane and the field on the camera’s plane via 
rotation matrices, the next step was to determine 
where a specific person was in the frame of the 
camera. In order to do this, we imagined the camera 
having a laser pointing directly out of its lens to the 
field. This laser beam is exactly over the person we 
are searching for, goes straight through that person 
and hits the field at a certain point. This point, the 
intersection between the field’s plane and the ray of 
the camera, has to be defined in order to map a 
person to pixels in the camera. In order to do this, 
we had to parameterize a ray and find its 
intersection with a plane. Since this equation is 
already well defined, our job was to take existing 
information and combine our knowledge of our 

specific camera and 3-D geometry, and create our 
specific equation to find this intersection point. 
Utilizing 3-D geometry and its existing applications, 
my senior design group was able to locate a moving 
person in a video camera frame successfully. 
 
Conclusion 
3-D geometry is essential to the creation and 
implemented solutions of computer vision in the 
real world. It makes computer vision more modular 
by allowing the camera be at any angle is wants and 
providing the necessary coordinate transformations 
to map a 3-D world into a 2-D image or video. 
Computer vision is being used today in a variety of 
different applications such as medical imaging, 
surveillance, and fingerprint recognition. Computer 
vision has vastly improved different existing 
technologies; and without 3-D geometry, this would 
not have been possible. 
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