
	

	
	 	 	 	 	

	

 ECE Senior Capstone Project 2019 Tech Notes

UAV LiDAR Mapping

By Joseph Bessette-Denwood, ECE ‘19

Introduction
Chip to chip protocols are the methods of
communication that different computer chips use to
talk to each other. The priorities of these protocols
typically fall into one of three categories: cost,
speed, and reliability. Reliability refers to how low
of a probability of failure the system has. Speed is
typically measured in two ways: baud rate and bits
per second. Baud rate is symbols per second and
bits per second (bps) refers to the effective output in
number of bits transmitted per second. This is
generally measured in kilobits (kbps) or megabits
(mbps) per second for the protocols that are being
discussed here, which refers to 8000 (220) bps or
1000000 (230) bps respectively. Cost can refer to a
few different things, such as: the literal cost of
additional development to implement it, or the
power cost of the system. This paper will be
focusing on the power costs, as the power costs
have become more important as battery technology
has stagnated, resulting in power savings becoming
more important.
I2C
I2C (Typically said I-Two-C or I-squared-C) stands
for Inter-Integrated Circuit. It is a Client-Server
protocol, with two lines, a serial data line (SDL),
and a serial clock line (SCL)7. There is no maximum
size to a message. This protocol allows for multiple
clients and multiple servers, the number depending
on the addressing scheme. Additionally, a node
may switch roles between messages. There are four
potential modes of operation on SDL: client
transmit, client receive, server transmit, and server
receive8. A client will start in client transmit mode,
and will start by sending a START signal. It will
then send the address field that the message is
targeted to. After that, a single bit will signal either
read 1 or write 0 from the client to the server. This
is followed up by the data, and finally a STOP
signal will end the message. Additionally, for every
eight data bits sent, the sender will wait for a single

return bit. If this is a 0, the sender will continue, if
the line is a 1 it will stop, for either the receiver
doesn’t exist or it is in error9.

Figure 1. Image of I2C protocol timing diagram

The START and STOP signals are based on the
clock signal. I2C uses the clock line (SDL) to
control the line, while using the data line (SDA) to
send data. The devices use a logic zero on SCL to
tell the system that SDA has been changed. When
SCL holds logic one, SDA should stay constant.
This is only violated for the STOP and START
signals. During the START signal, the SCL line is
at one, and SDA transfers from one to zero. For the
STOP signal, the SCL line is at one, and SDA
transfers from zero to one9.

 The wires are pull-up, so multiple nodes can
write to the line at the same time, and if any node is
driving the line to zero, the line will go to zero.
When this is done on SDA, it is called arbitration,
and when done on SCL, it is called clock stretching.
Clock stretching allows the server to control the
speed of data transfer, allowing it to slow down the
data coming in if it needs to9. This is possible
because the lines are active low, meaning that in
order for SCL to return high during data transfer, no
line can be driving it low. Therefore, if a server is
driving it high, the line will stay high, and the client
will wait to send the next bit7. Arbitration is the
behavior of a node attempting to drive a one and
seeing the line as a zero, causing it to assume that
there is another node transmitting and therefore stop
transmitting.

UART
UART stands for universal asynchronous receiver-

Overview	and	Comparison	of	SPI,	I2C,	and	UART	
	

	

	
2	

transmitter, and is also commonly known as serial.
UART has three modes11. The first is simplex,
which only allows one device to communicate to the
other. The second is full duplex, which uses two
lines, allowing both nodes to be sending and
receiving at the same time. The final is semi-
duplex, which uses a single line, with the two nodes
switching being sender or receiver. The line has an
idle of high, with a low bit signaling a start of a
message. Depending on the code set that is being
used, there are five to ten bits following this,
followed by a high bit that signals the message has
ended11.

Figure 2. UART Protocol Packet

As this protocol is asynchronous, the transmitter has
a relatively simple task. The programmer decides a
bitrate, and the transmitter simply has to transmit
signals that are long enough for that bitrate11. The
receiver waits for a low signal at least half as long
as the bit rate, and uses that to synchronize its clock.
It then feeds the bits at every expected location
based on the clock into a shift register, before using
or presenting the data once the full set of bits has
been sent11. The protocol is extremely simple, but
this limits the maximum speed and limits what the
system can do.

SPI
SPI stands for Serial Peripheral Interface. It is a
single client, multiple server protocol, which uses
four lines for communication. The four lines are:
SCLK (Serial clock), MOSI (Client Output Server
Input), MISO (Client Input Server Output), and SS
(Server select)6. The clock is controlled by the
client, and is used as the control for when data is
sent. The client selects a server using the server
select lines, writing it to zero. Then, during every
clock cycle, the client uses the MOSI line to
transmit one bit to the server, and the server uses the
MISO line to transmit one bit to the client7. When
the client is done with the communication, it will
stop using the clock line, and deselect the server.

Figure 3. SPI Protocol Packet

Conclusion

While this tech note describes three protocols, there
are a huge number of protocols that exist, each with
their benefits and disadvantages, each with its
benefits and downsides. I2C allows for numerous
nodes on its system, and for those nodes to change
from client to Server very easily, during operation.
However, it has limited data transfer, with a
maximum of 3.4 Mbps in recent revisions, which
can be an issue in situations where the requirement
is higher1. UART is a system that depends on the
maximum accuracy of the clocks involved, as well
as the maximum sampling rate of the receiver.
Therefore, it has no maximum data rate, with
systems upwards of 35 Mbps existing. However,
UART is also the most limited system as far as
number of servers and clients, as per line it allows
only one transmitter and one receiver, and relying
on the clocks onboard to be accurate enough to
detect the signals. Finally, SPI also has not
specified upper limit, as it is based on the maximum
clock speed that can be sent through the SCLK
line1. It also allows for multiple servers, but cannot
elegantly handle an arbitrary number of servers, as
it either has to increase the number of control lines
linearly, or increase the delay on getting the data it
needs linearly.

Choosing the correct protocol depends on what your
needs are. In some cases, you may want something
simple, something that won’t produce secondary
issues, and don’t need a high bandwidth, you would
choose UART. In others, you may need a network
of chips to send small messages to each other, but
again, don’t need a high bandwidth, only sending
commands instead of large packets of data, so you
would choose I2C. If you were sending something
larger on a network, and only using a single client,
such as an image to a CPU, you would use SPI. In
our case, we used I2C to connect our LIDAR to our

	

	
3	

CPU, as the LIDAR doesn’t send large data packets,
but does need to act as both client and server.

References
1. Mikhaylov, Konstantin, and Jouni Tervonen.
"Evaluation of power efficiency for digital serial
interfaces of microcontrollers." New Technologies,
Mobility and Security (NTMS), 2012 5th International
Conference on. IEEE, 2012.
2. Myers, P. (2007). Interfacing Using Serial Protocoles:
Using SPI and I2C. In Proc. ESP 2005 (pp. 1-9).

a. Direct comparison of SPI & I2C - brief
3. Hanabusa, R. (2007). Comparing JTAG, SPI, and I2C.
Spansion’s application note, 1-7.

a. JTAG is typically used for debugging or
testing systems – not typically used for communications.
4. Thomas, G. (2008). Introduction to the modbus
protocol. The extension—a technical supplement to
control network, 9.

a. Modbus is the protocol the LeddarVu uses
5. Thomas, G. (2008). Introduction to Modbus Serial and
Modbus TCP. Ext. A Tech. Suppl. to Control Netw,
9(5), 4-7.

a. Comparison between Modbus over wires and
over the internet – only interested in wires.
6. https://learn.sparkfun.com/tutorials/serial-peripheral-
interface-spi/all
7. Oudjida, A. K., et al. "FPGA Implementation of I 2 C
& SPI Protocols: a Comparative Study."
8. Leal-del Río, Tatiana, Gustavo Juarez-Gracia, and L.
Noé Oliva-Moreno. "Implementation of the
communication protocols SPI and I2C using a FPGA by
the HDL-Verilog language." Research in Computing
Science (2014): 31-41.
9. Leens, Frédéric. "An introduction to I 2 C and SPI
protocols." IEEE Instrumentation & Measurement
Magazine 12.1 (2009): 8-13.
10. Bibin, M. C., and B. S. Premananda.
"Implementation of UART with BIST Technique in
FPGA." International Journal of Inventive Engineering
and Sciences (IJIES), ISSN (2013): 2319-9598.

Figures
1.https://en.m.wikipedia.org/wiki/File:I2C_data_transfer.
svg
2.https://en.wikipedia.org/wiki/Universal_asynchronous_
receiver-
transmitter#/media/File:UART_timing_diagram.svg
3.https://en.wikipedia.org/wiki/Serial_Peripheral_Interfa
ce#/media/File:SPI_timing_diagram2.svg

