
Department of Electrical and Computer Engineering
Senior Project Handbook: http://sites.tufts.edu/eeseniordesignhandbook/

ECE Senior Capstone Project 2021 Tech Notes

Designing a VHDL Toolchain
By Athokshay Ashok, ECE ‘21

Introduction

Like most popular programming languages
used today, VHDL (Very High-Speed Integrated
Circuit Hardware Description Language) has a
familiar syntax that enables programmers to describe
digital circuits through code. For someone new to the
world of HDLs, it is common to make syntactic and
semantic mistakes that can often result in vague error
messages from the standard VHDL compilers used in
widely used products such as ModelSim and
Radiant. Linting is a static code analysis process that
runs separate from the compilation stage and
attempts to catch these mistakes in order to provide
more constructive warnings and errors. Our linter
focuses primarily on checking for consistency with
types for declared signals, initialization of declared
signals, entity-component mismatches, and
undeclared libraries.

Related Work
There are several commercial VHDL linters

available in the market such as VHDL-Lint and
Sigasi, but they lack the simplicity that our project
offers in terms of usage and specificity of targeted
error messages. Additionally, we provide a cross-
platform toolchain for generating waveforms of
testbenches and uploading programs to an FPGA.
Any function can be performed with a single
command from the CLI, while existing tools often
require multiple steps to achieve the same tasks.

Figure 1: CLI commands for our toolchain

Toolchain
Our toolchain, which is built entirely on

Python, uses the following open-source tools:
‘GHDL’ for VHDL compilation and elaboration,
‘gtkwave’ for reading in .vcd files and generating
waveforms, ‘yosys’ for synthesis, ‘nextpnr-ice40’ for
routing, ‘icepack’ for generating bitstreams, and
‘iceprog’ for uploading bitstreams to an FPGA. We
use subprocess calls to run the executables for each
tool in sequence seamlessly, with the only required
inputs being a file path and/or a unit name. If any
step in the pipeline fails, we terminate and return
constructive error messages as to which step failed
and the most likely reason for the failure. These
executables run much faster than the compilers and
waveform generators provided by ModelSim and
Radiant. Currently, we only support uploading
bitstreams to an UPduino 3.0 board, which is the
primary board used by the ES-4 course at Tufts.

Tokenizing a VHDL File
To parse through a VHDL file, we need to

convert the raw text into meaningful information.
This is done using ‘pyVHDLParser’, an open-source
python library that slices a VHDL file into tokens
and returns an iterator for the stream of generated
tokens. The tokens indicate whether something is a
space, a line break, a comment, or a keyword that

Turquoise Blue: VHDL Linter + Compilation Toolchain

indicates the start of a critical section of the file.
Each token also contains information such as the file
name, line number, and column number where the
token starts, which enable us to output clear
messages. The iterator itself is a double-linked list
that starts at the head of the file.

Using a DFA
Every VHDL file has to follow a specified

format: a list of imported libraries, an entity
declaration, and the architecture of the unit. Within
the entity, we declare signals and their types in ports
and as generics. In the architecture, we can include
components implemented in other files, declare new
signals, create processes, and perform other
computations. A single missing bracket, comma,
colon, or semicolon can cause the compilation of a
file to fail, so it is crucial to track the occurrences of
the tokens and store this information for future
checks.

To keep track of what state a file is in as we
iterate through the tokens and to check if there are
any potential errors, we use a deterministic finite
automaton (DFA), which is a state machine. Every
DFA must have exactly one start state, from which
we can add transitions to other states depending on
which inputs we receive. There exists a set of accept
states that indicates a successful traversal through the
machine, given that there are no more tokens
expected.

We first designed a class that represents a
single state, and then an interface for a DFA that can
be used to create state machines for each specific
section of a file by simply adding new states and
transitions. We also include callback functions,
which are triggered if the machine makes a certain
transition. This enables us to compare values from
the current state to those derived from the previous
states.

Constructing Customized DFAs
With this template, we created DFAs for each

sub-component of a VHDL file such as entity,
component, signal, port map, etc. Figure 2 shows the
DFA for any entity declaration.

Figure 2: DFA for Entity declarations

To track errors and warnings along the way,
we created classes to represent them as well as a
logger class to store each entry. A messages class
was also implemented to print color-coded messages
to the CLI using the ‘colored’ library from Python.

The DFAs each take in as input the token
iterator and the logger. At the top level, the DFAs are
triggered by certain keywords. For example, if we
encounter the keyword “entity” as we iterate through
the tokens, we call the parsing function from the
entity DFA and have it run until it reaches an accept
state or encounters an error/warning.

We can also call an another DFA inside the
current one. For instance, the entity, component, and
signal declaration DFAs all require a type-check of
the signals. We modularized this process by creating
a DFA that gets triggered when it reads a signal type
token and verifies if it has the right format. We
support most of the commonly used types like
std_logic, std_logic_vector, unsigned, signed, etc.
After this state machine has processed the type and
reached an accept state, we return to where we left
off in the main DFA and resume traversing.

We run through the files twice: once to store
the necessary information and once to validate
information between multiple files.

Conclusion
 VHDL can be tricky to get accustomed to,

especially for those who have prior experience with
some standard programming language such as Java,
Python, C++, etc. While there are plenty of software
that offer compilation and simulation, our project
aims to simplify these processes, provide better
insights into errors, and support both MacOS and

2

Windows. Our linter can be easily scaled up to
perform further static code analysis and target a
range of different errors.

References
1. Gingold, T. (2020). GHDL Documentation

Release 1.0-dev. https://ghdl.readthedocs.io/
_/downloads/en/latest/pdf/

2. GTKWave 3.3 Wave Analyzer User’s Guide.
(n.d.). Retrieved May 6, 2021, from http://
gtkwave.sourceforge.net/gtkwave.pdf

3. Lehmann, P. (2020, December 27). The

pyVHDLParser Documentation —
pyVHDLParser 0.6.0 documentation.
Pyvhdlparser.readthedocs.io. https://
pyvhdlparser.readthedocs.io/en/latest/

4. Wolf, C. (n.d.). Yosys Manual. Retrieved May
6, 2021, from http://www.clifford.at/yosys/
files/yosys_manual.pdf

5. Sipser, M. (2012). Introduction to the Theory
of Computation. United States: Cengage
Learning.

3

https://ghdl.readthedocs.io/_/downloads/en/latest/pdf/
https://ghdl.readthedocs.io/_/downloads/en/latest/pdf/
https://pyvhdlparser.readthedocs.io/en/latest/
https://pyvhdlparser.readthedocs.io/en/latest/
http://www.clifford.at/yosys/files/yosys_manual.pdf
http://www.clifford.at/yosys/files/yosys_manual.pdf
http://www.clifford.at/yosys/files/yosys_manual.pdf

