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Introduction 

Like most popular programming languages 
used today, VHDL (Very High-Speed Integrated 
Circuit Hardware Description Language) has a 
familiar syntax that enables programmers to describe 
digital circuits through code. For someone new to the 
world of HDLs, it is common to make syntactic and 
semantic mistakes that can often result in vague error 
messages from the standard VHDL compilers used in 
widely used products such as ModelSim and 
Radiant. Linting is a static code analysis process that 
runs separate from the compilation stage and 
attempts to catch these mistakes in order to provide 
more constructive warnings and errors. Our linter 
focuses primarily on checking for consistency with 
types for declared signals, initialization of declared 
signals, entity-component mismatches, and 
undeclared libraries.

Related Work 
There are several commercial VHDL linters 

available in the market such as VHDL-Lint and 
Sigasi, but they lack the simplicity that our project 
offers in terms of usage and specificity of targeted 
error messages.  Additionally, we provide a cross-
platform toolchain for generating waveforms of 
testbenches and uploading programs to an FPGA. 
Any function can be performed with a single 
command from the CLI, while existing tools often 
require multiple steps to achieve the same tasks. 

Figure 1: CLI commands for our toolchain

Toolchain 
Our toolchain, which is built entirely on 

Python, uses the following open-source tools: 
‘GHDL’ for VHDL compilation and elaboration, 
‘gtkwave’ for reading in .vcd files and generating 
waveforms, ‘yosys’ for synthesis, ‘nextpnr-ice40’ for 
routing, ‘icepack’ for generating bitstreams, and 
‘iceprog’ for uploading bitstreams to an FPGA. We 
use subprocess calls to run the executables for each 
tool in sequence seamlessly, with the only required 
inputs being a file path and/or a unit name. If any 
step in the pipeline fails, we terminate and return 
constructive error messages as to which step failed 
and the most likely reason for the failure. These 
executables run much faster than the compilers and 
waveform generators provided by ModelSim and 
Radiant. Currently, we only support uploading 
bitstreams to an UPduino 3.0 board, which is the 
primary board used by the ES-4 course at Tufts.

Tokenizing a VHDL File 
To parse through a VHDL file, we need to 

convert the raw text into meaningful information. 
This is done using ‘pyVHDLParser’, an open-source 
python library that slices a VHDL file into tokens 
and returns an iterator for the stream of generated 
tokens. The tokens indicate whether something is a 
space, a line break, a comment, or a keyword that 
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indicates the start of a critical section of the file. 
Each token also contains information such as the file 
name, line number, and column number where the 
token starts, which enable us to output clear 
messages. The iterator itself is a double-linked list 
that starts at the head of the file.

Using a DFA 
Every VHDL file has to follow a specified 

format: a list of imported libraries, an entity 
declaration, and the architecture of the unit. Within 
the entity, we declare signals and their types in ports 
and as generics. In the architecture, we can include 
components implemented in other files, declare new 
signals, create processes, and perform other 
computations.  A single missing bracket, comma, 
colon, or semicolon can cause the compilation of a 
file to fail, so it is crucial to track the occurrences of 
the tokens and store this information for future 
checks.

To keep track of what state a file is in as we 
iterate through the tokens and to check if there are 
any potential errors, we use a deterministic finite 
automaton (DFA), which is a state machine. Every 
DFA must have exactly one start state, from which 
we can add transitions to other states depending on 
which inputs we receive. There exists a set of accept 
states that indicates a successful traversal through the 
machine, given that there are no more tokens 
expected. 

We first designed a class that represents a 
single state, and then an interface for a DFA that can 
be used to create state machines for each specific 
section of a file by simply adding new states and 
transitions. We also include callback functions, 
which are triggered if the machine makes a certain 
transition. This enables us to compare values from 
the current state to those derived from the previous 
states.

Constructing Customized DFAs 
With this template, we created DFAs for each 

sub-component of a VHDL file such as entity, 
component, signal, port map, etc. Figure 2 shows the 
DFA for any entity declaration.

Figure 2: DFA for Entity declarations

To track errors and warnings along the way, 
we created classes to represent them as well as a 
logger class to store each entry. A messages class 
was also implemented to print color-coded messages 
to the CLI using the ‘colored’ library from Python.

The DFAs each take in as input the token 
iterator and the logger. At the top level, the DFAs are 
triggered by certain keywords. For example, if we 
encounter the keyword “entity” as we iterate through 
the tokens, we call the parsing function from the 
entity DFA and have it run until it reaches an accept 
state or encounters an error/warning. 

We can also call an another DFA inside the 
current one. For instance, the entity, component, and 
signal declaration DFAs all require a type-check of 
the signals. We modularized this process by creating 
a DFA that gets triggered when it reads a signal type 
token and verifies if it has the right format. We 
support most of the commonly used types like 
std_logic, std_logic_vector, unsigned, signed, etc. 
After this state machine has processed the type and 
reached an accept state, we return to where we left 
off in the main DFA and resume traversing.

We run through the files twice: once to store 
the necessary information and once to validate 
information between multiple files.

Conclusion 
 VHDL can be tricky to get accustomed to, 

especially for those who have prior experience with 
some standard programming language such as Java, 
Python, C++, etc. While there are plenty of software 
that offer compilation and simulation, our project 
aims to simplify these processes, provide better 
insights into errors, and support both MacOS and 
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Windows. Our linter can be easily scaled up to 
perform further static code analysis and target a 
range of different errors.

References 
1. Gingold, T. (2020). GHDL Documentation 

Release 1.0-dev. https://ghdl.readthedocs.io/
_/downloads/en/latest/pdf/ 

2. GTKWave 3.3 Wave Analyzer User’s Guide. 
(n.d.). Retrieved May 6, 2021, from http://
gtkwave.sourceforge.net/gtkwave.pdf 

  
3. Lehmann, P. (2020, December 27). The 

pyVHDLParser Documentation — 
pyVHDLParser 0.6.0 documentation. 
Pyvhdlparser.readthedocs.io. https://
pyvhdlparser.readthedocs.io/en/latest/

4. Wolf, C. (n.d.). Yosys Manual. Retrieved May 
6, 2021, from http://www.clifford.at/yosys/
files/yosys_manual.pdf

5. Sipser, M. (2012). Introduction to the Theory 
of Computation. United States: Cengage 
Learning.

  

3

https://ghdl.readthedocs.io/_/downloads/en/latest/pdf/
https://ghdl.readthedocs.io/_/downloads/en/latest/pdf/
https://pyvhdlparser.readthedocs.io/en/latest/
https://pyvhdlparser.readthedocs.io/en/latest/
http://www.clifford.at/yosys/files/yosys_manual.pdf
http://www.clifford.at/yosys/files/yosys_manual.pdf
http://www.clifford.at/yosys/files/yosys_manual.pdf

