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Introduction 
The Shamrock team has been developing a hazard 
detection system for rover landing on an asteroid this 
semester in senior design. The project focuses on image 
and LiDAR processing to determine a safe landing site on 
a hazardous surface. While most of the progress so far has 
been in processing simulated data for both the image and 
LiDAR systems, we plan to implement our algorithms on 
data collected from a physical experimental set up. We 
have been working with various resources at Tufts to 
develop a model asteroid in Halligan Hall and will fly a 
drone over the set up to collect image and LiDAR data for 
post-flight processing. We will collect terrain relative 
navigation data as well to place our measurements on a 
larger global map. 

An important component for correctly interpreting the 
data collected will be precise locations of the drone when 
each frame is collected. For this part of the project, we 
chose to develop a Kalman Filter, taking in inertial 
measurement unit (IMU) and terrain relative navigation 
(TRN) data, and returning an estimated position for each 
frame. This will help develop a robust view of the terrain 
we are looking at as compared to the global map. For the 
simulation stage of algorithm development, the Kalman 
Filter can be implemented using simulated IMU data that 
can closely resemble the IMU performance.

Research 
The Kalman Filter uses state space algorithms to 
determine correct measurements in systems with noise. 
Using previous sensor data, estimated changes in 
parameters, and covariance information, the Kalman 
Filter estimates the actual output as compared to an input 
measurement from reality. This algorithm can be applied 
to position, direction, timing offsets, and accelerometer 
offsets to name a few. 

The Kalman Filter algorithm is a discrete time system that 
consists of a set of state space equations. Each equation 
represents a system of equations, including matrices to 
dictate the effect of each variable on the output. The 
equations in the system are a state prediction, a 
covariance prediction, an innovation, an innovation 
covariance, a Kalman gain equation, a state update 
equation, and a covariance update equation. While this 
sounds like a very complex system, it is made up of 
purely linear equations of reasonably limited size. The 
only necessary technical knowledge required for 
understanding the mechanics of this algorithm is in 
matrix algebra and limited statistics. 

The algorithm works by taking in a vector of control 
inputs and measurement inputs, so input vectors from 
each of the two inputs to the system. It uses the control 
input and matrices that determine the effect of inputs and 
previous states to determine a predicted state. The 
covariance (or error) prediction for the state is determined 
using estimated process error and the state transition 
matrix (the matrix used to determine the effect of a 
previous state on the next). Using the measurement input, 
the innovation equation is used to come up with a 
comparison value between the prediction and reality. The 
innovation covariance equation determines the 
comparison between the between real error and predicted 
error. The transition matrix, covariance prediction, and 
innovation covariance are used to determine the Kalman 
gain which is then in turn used to moderate the state 
prediction and output the state output. Finally, the 
covariance update is determined using the Kalman gain, 
the transition matrix, and the covariance prediction. The 
final outputs of the system are the state update and the 
covariance update. These are then used to determine the 
future time steps of the algorithm. The equations 
described are as follows: 
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As an example, determining position of a moving object 
with known position is a common application of the 
Kalman Filter. For this example, the control input would 
be an expected acceleration and the measurement input 
would be an acceleration pulled from an IMU (this 
happens to be the first application developed for our 
project). The states for this application are position, 
velocity, and acceleration bias. This most simplified 
example only tracks one dimension but can be easily 
expanded into two or three dimensions as the 
intermediate equations are the same. This example uses 
simple mechanics equations to construct the transition 
matrix, as well as other matrices involved, and determine 
position from acceleration alone. 

Algorithm 
My approach for implementing this algorithm in 
MATLAB was to create classes for each parameter I want 
to track, a class for the Kalman Filter itself, and a script to 
run the filter on each parameter. For the Kalman Filter 
class, I included a function to take in all the constants 
from the parameter class and a function to step through 
the filtering. This class holds all the constant matrices and 
intermediate vectors as properties. 

The position class follows the position algorithm 
described above. This class holds the time step, position 
measurement noise and acceleration measurement noise 
as properties and contains a single function to set all the 
matrix values to be fed into the Kalman Filter. These 
values depend entirely on the sample period, time step, 
posit ion measurement noise and accelerat ion 
measurement noise.

The IMU data collected from the flight is converted to a 
stream of positions that are then fed to the filter with 
periodic correction by the Terrain Relative Navigation 
(TRN), which is a separate algorithm. The preliminary 
results are shown in the figure below. The Kalman Filter 
output smooths the IMU data while still following it 
closely. Further improvements can still be made to the 
error estimates to provide a more accurate correction.

 
Figure 1. Kalman Filter Implementation for 1 dimensional 
position 

Conclusion 
In conclusion, the Kalman filter is a very powerful tool 
for eliminating noise in a system. Since our project relies 
heavily on knowing exactly where the drone is in space to 
determine the correct landing site, the Kalman filter is 
incredibly important. It is a versatile algorithm that can 
be applied across the project, beyond just motion 
estimation. While there are many moving parts, the 
algorithm is fundamentally a series of linear equations 
that can be implemented easily in software to enhance the 
accuracy of the project output.
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