
	

	 Department	of	Electrical	and	Computer	Engineering	
Senior	Project	Handbook:	http://sites.tufts.edu/eeseniordesignhandbook/	

ECE Senior Capstone Project 2021 Tech Notes	

Quaternion Representation of 3D
Orientation and Rotation for
Sensor Fusion Applications
By Cam Gordon, ECE ‘21

Introduction
A three-axis gyroscope is a sensor device that
gathers data about how something rotates in three
dimensions. They are ubiquitous in smartphones and
found commonly in many systems that involve any
sort of movement or rotation. Working with this
sensor data can be tricky. Mathematically
representing orientation and rotation in three-
dimensional space is a complicated problem.
Interpreting and performing computations with these
representations is crucial in many systems that
utilize a three-axis gyroscope. One of the most
popular solutions is to use quaternions. A quaternion
is a complex number that represents a single
orientation or rotation in three-dimensional space.
Quaternions can be difficult to understand, but make
rotational computations simple to perform. They
have distinct advantages over alternative
representations, avoiding the mathematical edge
cases that afflict other systems and offering superior
computational efficiency. This technical report will
demonstrate the mathematical foundation behind the
quaternion and discuss the advantages of using
quaternions to process sensor data.

What is a Quaternion?
Simply put, a quaternion is a four-dimensional
complex number. A quaternion, q, takes the form:

 q = q0 + q1i + q2j + q3k

Where qi are real numbers and i, j, and k are the three
unit imaginary numbers. The q0 term represents the
real part of the quaternion and q1-3 are coefficients to
the three imaginary parts. The three unit imaginary
numbers arise from the statement:

 i2 = j2 = k2 = ijk = −1

These four qi values can be used to encode the
information that represents a single orientation or
rotation.

Mathematical Rules of Quaternions
Quaternions are governed by a few special
mathematical rules that differ from those surrounding
conventional complex numbers. Firstly, quaternions
are not communicative. That is to say, for two
quaternions, q and p:

 qp ≠ pq

This stems from the fact that the unit imaginary
numbers themselves are not communicative.
Multiplication between these numbers follow the
following rules:

Razzmatazz:	Smart	Frisbee	

	

	
2	

 ij = k ji = −k

jk = i kj = −i
ki = j ik = −j

The conjugate of a quaternion q is notated q* and is
defined as the following:

q = q0 + q1i + q2j + q3k
q* = q0 - q1i - q2j - q3k

The magnitude, or norm, of a quaternion is notated
as |q| and is defined as:

 |𝑞|	 = 	 𝑞%& + 𝑞(& + 𝑞&& + 𝑞)&

Understanding Quaternions Through
Examples
Quaternions are complex in more ways than one. The
use of three imaginary numbers, rather than just the
one that most people are used to, can be difficult to
wrap one’s head around. Understanding quaternions
and their uses can be quite unintuitive, as it is
impossible to visualize a quaternion, because it exists
in four dimensions. For that reason, using an example
in lower dimensionality can make it easier to
conceptualize the quaternion.

A phasor is a two dimensional complex number that
can be used to represent an angle or a rotation about a
single axis. These 2D phasors are analogous to their
4D quaternion counterparts. Phasors are represented
as a + bi, and a single phasor represents either an
orientation or a rotation, just like quaternions. The
difference being that phasors represent rotation about
one axis, while quaternions represent rotation about 3
axes. Consider this 2D dimensional example:

Phasor Rotation Example
A phasor P represents an orientation. P has the value:
P = 1 + 3i. Writing a phasor in this form gives a vector
of two components that correspond to the two axes in
two-dimensional space. This encodes a magnitude
and angle. This phasor can be plotted as a vector in
the complex plane:

	
Figure	1:	P	=	1	+	3i	plotted	on	the	complex	plane

We can rotate P by using another phasor. The phasor
R represents a rotation operation. R should be of the
form: R = cos(Θ) + i sin(Θ), where Θ is the angle of
rotation. This will result in a unit phasor, or a phasor
that has a magnitude of one. It is important that R be
of unit magnitude, because this will ensure that we do
not change the magnitude of P, only the angle.

Here let’s use Θ = 45°. So R = cos(45°) + i sin(45°)
=	 &

&
+ 𝑖 &

&
	. R, too, can be plotted on the complex

plane:

	
Figure	2:	R	=	cos(45°)	+	i	sin(45°)

To perform the rotation, we simply multiply P by R.
The resulting phasor will be a 45 degree rotation of P:

	

	
3	

	
Figure	3:	Q	is	the	result	of	rotation	R	being	performed	on	P

Q = PR = (1 + 3i)(cos(45°) + i sin(45°))
= -1.41 + 2.82i

This two-dimensional example is directly analogous
to the rotation operation performed by a quaternion,
with the helpful addition that phasor example can be
visualized on a two-dimensional plot, while it would
require four dimensions to plot quaternions.

Let’s look at an example of the math behind a rotation
in 3D space using quaternions:

Quaternion Rotation Example
An orientation in 3D space is represented by a
quaternion P that has no real part. Let’s give P an
arbitrary value.

P = - 2i + 3k - 4j

This notation represents a vector of three elements
that correspond to the three axes of three-dimensional
space. Now we want to take this quaternion
representing a magnitude and orientation and perform
a rotation on it that will result in a new orientation but
maintain the original magnitude.

To do this, we construct a quaternion, R, that
represents a rotation operation. R should be of the
form:

R = cos(Θ/2) + sin(Θ/2) (ai + bj + ck)

When we built the rotation phasor, all we needed was
an angle, Θ, because there was a single axis of
rotation. With a rotation quaternion, we must specify
both Θ and the values of a, b, and c. This is because
we need to specify what axis the rotation is occurring
about. The vector v = [a, b, c] specifies the axis of
rotation in three-dimensional space. Vector v should
be of unit magnitude, which will result in quaternion
R being of unit magnitude. This means that when the
rotation operation is performed, the magnitude of P is
not affected.

For example, let’s choose an axis of rotation that
exists in the plane of the i and j axes, bisecting these
two axes. And let’s rotate 60° around that axis. We
would construct the following rotation quaternion:

[a, b, c] = [&
&

, &
&

, 0] Θ = 60°

R = cos(30°) + sin(30°)(&
&

i + &
&

j + 0k)

=)
&

 + &
+

i + &
+

j + 0k

Now to perform the rotation operation, which will
result in a rotated version of P with its original
magnitude. In contrast to phasors, quaternions do not
perform this operation by simply multiplying. To
rotate P by R, one must left-side multiply P by R and
then right-side multiply by the conjugate of R
(remembering that quaternion multiplication is not
communicative). That is, to produce Q, the quaternion
result of this rotation, one should perform:

Q = RPR*

This explains why the rotation quaternion uses Θ/2
rather than simply Θ. One rotation operation
corresponds to two multiplications, so as a result the
rotation will be twice the angle contained within the
sine and cosine.

Now let’s perform the rotation of P by R:

	

	
4	

Q = RPR*

= ()
&

 + &
+

i + &
+

j + 0k)(- 2i + 3k - 4j)()
&

 - &
+

i

- &
+

j - 0k)
= 1.699i - 0.699j + 5.06k

Note that the resulting quaternion, Q, is three
dimensional, corresponding to a point in 3D space,
just as our initial quaternion P was. The magnitude of
Q is the same as the magnitude of P, just as we
intended.

Advantages of Quaternions in Sensor
Fusion
Sensor fusion is the practice of combining data from
multiple sensors to form more complete and accurate
sets of data. An inertial measurement unit (IMU) will
typically contain both a gyroscope and an
accelerometer. These two sensors are capable of
providing data on their own, but their data can be used
in conjunction, and the result is more accurate. There
exists a host of algorithms to perform sensor fusion on
data from IMUs.

The most common sensor fusion algorithms, such as
the Kalman filter, can be implemented using any
representation of orientation. The most common
alternative to quaternions for representing orientation
mathematically is the use of Euler angles and
rotational matrices. Using quaternions for sensor
fusion has a few distinct advantages over this
alternative representation.

The main advantage of using the Euler angle
representation is that it is the most intuitive and easily
visualized system for representing orientation and
rotation. This representation system fixes three
perpendicular axes in space, and describes three
different angles of rotation about these three different
axes. These three Euler angles, denoted as α, β, and
γ, are sometimes called roll, pitch, and yaw. To rotate
a three-dimensional vector based on these points, we
multiply the vector by the following matrix, computed
from the Euler angles:

This matrix presents the possibility for a mathematical
edge case known as gimbal lock. For example, if

β = π/2, then the matrix can be rewritten as:

Note that the angles α and γ now control all the same
quantities, meaning that changing either of these angles
will perform rotations along the same axis. This results in
the loss of a degree of freedom from the system, and we
will have an entire axis that we cannot perform a rotation
around. This phenomenon is known as gimbal lock and it
can be quite dangerous if it occurs in something like an
aircraft. The Apollo 11 spacecraft famously had a gimbal
lock problem and required specific operation to avoid this
situation.

Special algorithms exist to smooth over this gimbal lock
problem in Euler angle based sensor fusion, but using
quaternions avoids this problem entirely. Additionally, the
trigonometric nature of Euler angle computation makes
sensor fusion computations nonlinear, while the use of
quaternions in these algorithms becomes linear.

The other alternative to a quaternion-based representation
of rotation is to use rotational matrices. With a rotational
matrix, you construct a 3 by 3 matrix that performs a
rotation upon a three-dimensional vector. The main
disadvantage of this method compared to quaternions is
the storage required for rotational matrices. The rotational
matrix requires nine values to represent a single rotation,
while quaternions require only four. This is a big reduction
in storage space for no loss in information. This difference
is especially important in small IMU systems that are short
for memory. Sensor fusion is often performed on a
microprocessor which can mean that storage space is
expensive, and the savings that quaternions provide can be
essential. Additionally, quaternions are arguably more
intuitive and elegant than rotational matrices. A quaternion
of rotation defines an axis and angle of rotation, while a
rotational matrix has no such natural intuition for its
rotation.

	

	
5	

Conclusion
Understanding quaternions and their rules and methods of
operation is an important skill for anybody using
gyroscope or IMU data. Although quaternions can be
unintuitive and confusing at first glance, they have a
straightforward set of rules that govern their operation.
Sensor fusion is an important step for improving the
robustness of sensor data. Sensor fusion can be performed
using any type of three dimensional representation of
orientation and rotation, but quaternions have distinct
advantages. Quaternion sensor fusion computation offers
an elegant alternative to the matrix multiplication
required by Euler angles and rotational matrices.
Additionally, quaternions avoid the gimbal lock problem
encountered by Euler angles and offer a superior memory
footprint to rotational matrices. Sensor fusion algorithms
are made nicely linear by using quaternions, while Euler
angles systems become nonlinear due to their reliance on
trigonometric functions. For all these reasons,
quaternions are the representation of choice for modern
IMU systems and sensor fusion algorithms.

References
Ben-Ari, Moti. A Tutorial on Euler Angles and
Quaternions. Weizmann Institute of Science, 2014,
https://www.weizmann.ac.il/sci-tea/benari/sites/sci-
tea.benari/files/uploads/softwareAndLearningMaterials/q
uaternion-tutorial-2-0-1.pdf.

Deibel, James. Representing Attitude: Euler Angles, Unit
Quaternions, and Rotation Vectors. Stanford University,
20 Oct. 2006,
https://www.astro.rug.nl/software/kapteyn/_downloads/fa
29752e4cd69adcfa2fc03b1c020f4e/attitude.pdf.

Funda, J., et al. “On Homogeneous Transforms,
Quaternions, and Computational Efficiency.” IEEE
Transactions on Robotics and Automation, vol. 6, no. 3,
1990, pp. 382–88, doi:10.1109/70.56658.

Hoag, David. Apollo Guidance and Navigation of Apollo
IMU Gimbal Lock. MIT Instrumentation Laboratory, Apr.
1963, https://www.hq.nasa.gov/alsj/e-1344.htm.

Kim, A., and M. F. Golnaraghi. “A Quaternion-Based
Orientation Estimation Algorithm Using an Inertial
Measurement Unit.” PLANS 2004. Position Location and
Navigation Symposium (IEEE Cat. No.04CH37556),

IEEE, 2004, pp. 268–72,
doi:10.1109/PLANS.2004.1309003.

Sanderson, Grant, and Ben Eater. “Visualizing
Quaternions.” Visualizing Quaternions: An Explorable
Video Series, https://eater.net/quaternions.

Valenti, Roberto G., et al. “Keeping a Good Attitude: A
Quaternion-Based Orientation Filter for IMUs and
MARGs.” Sensors (Basel, Switzerland), vol. 15, no. 8,
Aug. 2015, pp. 19302–30, doi:10.3390/s150819302.

Wyss-Gallifent, Justin. Chapter 4: Gimbal Lock.
University of Maryland,
http://www.math.umd.edu/~immortal/MATH431/lecturen
otes/ch_gimballock.pdf.

	

	

