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Introduction 
A three-axis gyroscope is a sensor device that 
gathers data about how something rotates in three 
dimensions. They are ubiquitous in smartphones and 
found commonly in many systems that involve any 
sort of movement or rotation. Working with this 
sensor data can be tricky. Mathematically 
representing orientation and rotation in three-
dimensional space is a complicated problem. 
Interpreting and performing computations with these 
representations is crucial in many systems that 
utilize a three-axis gyroscope. One of the most 
popular solutions is to use quaternions. A quaternion 
is a complex number that represents a single 
orientation or rotation in three-dimensional space. 
Quaternions can be difficult to understand, but make 
rotational computations simple to perform. They 
have distinct advantages over alternative 
representations, avoiding the mathematical edge 
cases that afflict other systems and offering superior 
computational efficiency. This technical report will 
demonstrate the mathematical foundation behind the 
quaternion and discuss the advantages of using 
quaternions to process sensor data.  
 

What is a Quaternion? 
Simply put, a quaternion is a four-dimensional 
complex number. A quaternion, q, takes the form: 

 

 q = q0 + q1i + q2j + q3k 

 

Where qi are real numbers and i, j, and k are the three 
unit imaginary numbers. The q0 term represents the 
real part of the quaternion and q1-3 are coefficients to 
the three imaginary parts. The three unit imaginary 
numbers arise from the statement: 

 

 i2 = j2 = k2 = ijk = −1 

 

These four qi values can be used to encode the 
information that represents a single orientation or 
rotation.  

 

Mathematical Rules of Quaternions 
Quaternions are governed by a few special 
mathematical rules that differ from those surrounding 
conventional complex numbers. Firstly, quaternions 
are not communicative. That is to say, for two 
quaternions, q and p: 
 
 qp ≠ pq 
 
This stems from the fact that the unit imaginary 
numbers themselves are not communicative. 
Multiplication between these numbers follow the 
following rules: 
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 ij = k       ji = −k 

jk = i       kj = −i  
ki = j       ik = −j  

 
The conjugate of a quaternion q is notated q* and is 
defined as the following: 
 

q = q0 + q1i + q2j + q3k 
q* = q0 - q1i - q2j - q3k 

 
The magnitude, or norm, of a quaternion is notated 
as |q| and is defined as: 
 
 |𝑞|	 = 	 𝑞%& + 𝑞(& + 𝑞&& + 𝑞)& 
 
Understanding Quaternions Through 
Examples 
Quaternions are complex in more ways than one. The 
use of three imaginary numbers, rather than just the 
one that most people are used to, can be difficult to 
wrap one’s head around. Understanding quaternions 
and their uses can be quite unintuitive, as it is 
impossible to visualize a quaternion, because it exists 
in four dimensions. For that reason, using an example 
in lower dimensionality can make it easier to 
conceptualize the quaternion.  
 
A phasor is a two dimensional complex number that 
can be used to represent an angle or a rotation about a 
single axis. These 2D phasors are analogous to their 
4D quaternion counterparts. Phasors are represented 
as a + bi, and a single phasor represents either an 
orientation or a rotation, just like quaternions. The 
difference being that phasors represent rotation about 
one axis, while quaternions represent rotation about 3 
axes. Consider this 2D dimensional example: 
 

Phasor Rotation Example 
A phasor P represents an orientation. P has the value: 
P = 1 + 3i. Writing a phasor in this form gives a vector 
of two components that correspond to the two axes in 
two-dimensional space.  This encodes a magnitude 
and angle. This phasor can be plotted as a vector in 
the complex plane: 
 
 

	
Figure	1:	P	=	1	+	3i	plotted	on	the	complex	plane 

 

We can rotate P by using another phasor. The phasor 
R represents a rotation operation. R should be of the 
form: R = cos(Θ) + i sin(Θ), where Θ is the angle of 
rotation. This will result in a unit phasor, or a phasor 
that has a magnitude of one. It is important that R be 
of unit magnitude, because this will ensure that we do 
not change the magnitude of P, only the angle.  
 
Here let’s use Θ = 45°. So R = cos(45°) + i sin(45°) 
=	 &

&
+ 𝑖 &

&
	. R, too, can be plotted on the complex 

plane: 

	
Figure	2:	R	=	cos(45°)	+	i	sin(45°) 

To perform the rotation, we simply multiply P by R. 
The resulting phasor will be a 45 degree rotation of P: 
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Figure	3:	Q	is	the	result	of	rotation	R	being	performed	on	P 

 
Q = PR = (1 + 3i)(cos(45°) + i sin(45°))  
= -1.41 + 2.82i 

 
This two-dimensional example is directly analogous 
to the rotation operation performed by a quaternion, 
with the helpful addition that phasor example can be 
visualized on a two-dimensional plot, while it would 
require four dimensions to plot quaternions.  
 
Let’s look at an example of the math behind a rotation 
in 3D space using quaternions: 
 
Quaternion Rotation Example 
An orientation in 3D space is represented by a 
quaternion P that has no real part.  Let’s give P an 
arbitrary value. 
 

P = - 2i + 3k - 4j 
 
This notation represents a vector of three elements 
that correspond to the three axes of three-dimensional 
space. Now we want to take this quaternion 
representing a magnitude and orientation and perform 
a rotation on it that will result in a new orientation but 
maintain the original magnitude.  
 
To do this, we construct a quaternion, R, that 
represents a rotation operation. R should be of the 
form: 
 

R = cos(Θ/2) + sin(Θ/2) (ai + bj + ck) 
 
 
When we built the rotation phasor, all we needed was 
an angle, Θ, because there was a single axis of 
rotation. With a rotation quaternion, we must specify 
both Θ and the values of a, b, and c. This is because 
we need to specify what axis the rotation is occurring 
about. The vector v = [a, b, c] specifies the axis of 
rotation in three-dimensional space. Vector v should 
be of unit magnitude, which will result in quaternion 
R being of unit magnitude. This means that when the 
rotation operation is performed, the magnitude of P is 
not affected. 
 
For example, let’s choose an axis of rotation that 
exists in the plane of the i and j axes, bisecting these 
two axes. And let’s rotate 60° around that axis. We 
would construct the following rotation quaternion: 
 

[a, b, c] = [ &
&

, &
&

,  0]  Θ = 60° 

R = cos(30°) + sin(30°)( &
&

i + &
&

j + 0k)  

= )
&

 + &
+

i + &
+

j + 0k 
 
Now to perform the rotation operation, which will 
result in a rotated version of P with its original 
magnitude. In contrast to phasors, quaternions do not 
perform this operation by simply multiplying. To 
rotate P by R, one must left-side multiply P by R and 
then right-side multiply by the conjugate of R 
(remembering that quaternion multiplication is not 
communicative). That is, to produce Q, the quaternion 
result of this rotation, one should perform: 
 

Q = RPR* 
 
This explains why the rotation quaternion uses Θ/2 
rather than simply Θ. One rotation operation 
corresponds to two multiplications, so as a result the 
rotation will be twice the angle contained within the 
sine and cosine.  
 
Now let’s perform the rotation of P by R: 
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Q = RPR*  

= ( )
&

 + &
+

i + &
+

j + 0k)(- 2i + 3k - 4j)(	 )
&

 - &
+

i 

- &
+

j - 0k)  
= 1.699i - 0.699j + 5.06k 

 
Note that the resulting quaternion, Q, is three 
dimensional, corresponding to a point in 3D space, 
just as our initial quaternion P was. The magnitude of 
Q is the same as the magnitude of P, just as we 
intended.  
 
Advantages of Quaternions in Sensor 
Fusion 
Sensor fusion is the practice of combining data from 
multiple sensors to form more complete and accurate 
sets of data. An inertial measurement unit (IMU) will 
typically contain both a gyroscope and an 
accelerometer. These two sensors are capable of 
providing data on their own, but their data can be used 
in conjunction, and the result is more accurate. There 
exists a host of algorithms to perform sensor fusion on 
data from IMUs.  
 
The most common sensor fusion algorithms, such as 
the Kalman filter, can be implemented using any 
representation of orientation. The most common 
alternative to quaternions for representing orientation 
mathematically is the use of Euler angles and 
rotational matrices. Using quaternions for sensor 
fusion has a few distinct advantages over this 
alternative representation.  
 
The main advantage of using the Euler angle 
representation is that it is the most intuitive and easily 
visualized system for representing orientation and 
rotation. This representation system fixes three 
perpendicular axes in space, and describes three 
different angles of rotation about these three different 
axes. These three Euler angles, denoted as α, β, and 
γ, are sometimes called roll, pitch, and yaw. To rotate 
a three-dimensional vector based on these points, we 
multiply the vector by the following matrix, computed 
from the Euler angles: 
 

 

 
This matrix presents the possibility for a mathematical 
edge case known as gimbal lock. For example, if  

β = π/2, then the matrix can be rewritten as: 

 

Note that the angles α and γ now control all the same 
quantities, meaning that changing either of these angles 
will perform rotations along the same axis. This results in 
the loss of a degree of freedom from the system, and we 
will have an entire axis that we cannot perform a rotation 
around. This phenomenon is known as gimbal lock and it 
can be quite dangerous if it occurs in something like an 
aircraft. The Apollo 11 spacecraft famously had a gimbal 
lock problem and required specific operation to avoid this 
situation.  

 

Special algorithms exist to smooth over this gimbal lock 
problem in Euler angle based sensor fusion, but using 
quaternions avoids this problem entirely. Additionally, the 
trigonometric nature of Euler angle computation makes 
sensor fusion computations nonlinear, while the use of 
quaternions in these algorithms becomes linear.  

 

The other alternative to a quaternion-based representation 
of rotation is to use rotational matrices. With a rotational 
matrix, you construct a 3 by 3 matrix that performs a 
rotation upon a three-dimensional vector. The main 
disadvantage of this method compared to quaternions is 
the storage required for rotational matrices. The rotational 
matrix requires nine values to represent a single rotation, 
while quaternions require only four. This is a big reduction 
in storage space for no loss in information. This difference 
is especially important in small IMU systems that are short 
for memory. Sensor fusion is often performed on a 
microprocessor which can mean that storage space is 
expensive, and the savings that quaternions provide can be 
essential. Additionally, quaternions are arguably more 
intuitive and elegant than rotational matrices. A quaternion 
of rotation defines an axis and angle of rotation, while a 
rotational matrix has no such natural intuition for its 
rotation.  
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Conclusion 
Understanding quaternions and their rules and methods of 
operation is an important skill for anybody using 
gyroscope or IMU data. Although quaternions can be 
unintuitive and confusing at first glance, they  have a 
straightforward set of rules that govern their operation. 
Sensor fusion is an important step for improving the 
robustness of sensor data. Sensor fusion can be performed 
using any type of three dimensional representation of 
orientation and rotation, but quaternions have distinct 
advantages. Quaternion sensor fusion computation offers 
an elegant alternative to the matrix multiplication 
required by Euler angles and rotational matrices. 
Additionally, quaternions avoid the gimbal lock problem 
encountered by Euler angles and offer a superior memory 
footprint to rotational matrices. Sensor fusion algorithms 
are made nicely linear by using quaternions, while Euler 
angles systems become nonlinear due to their reliance on 
trigonometric functions. For all these reasons, 
quaternions are the representation of choice for modern 
IMU systems and sensor fusion algorithms.  
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