
 Department of Electrical and Computer Engineering
Senior Project Handbook: http://sites.tufts.edu/eeseniordesignhandbook/

ECE Senior Capstone Project 2021 Tech Notes

Quick Introduction to Neural

Networks
By Max Gudwin, ECE ‘21

Introduction
“Machine learning” is a term that gets thrown around

quite a bit in the fields of electrical and computer

engineering. Despite this, many engineers have not

yet had to work with machine learning. The result is

a knowledge gap on how machine learning works.

The team Maximum Red Senior Design project used

an Artificial Neural Network (ANN) with supervised

learning to classify EMG signals. This tech note is

dedicated to demystifying this part of the project by

giving a light introduction on the basics of Neural

Networks with supervised feed-forward learning.

Specifically, this tech note walks though the parts of

a feed forward neural network with supervised

learning. Because neural networks are the subject of

incredible amounts of research, this tech note will

not go into detail on every subject, but it can

hopefully be used as a strong starting point for

further exploration.

Anatomy of a neural network
To understand what a neural network is, a good

place to start would be looking at a diagram (Figure

1). A diagram of a neural network usually looks like

a bunch of circles in columns or rows connected

together with lines. In such a diagram, columns can

be organized into three categories: the input layer,

the hidden later, and the output layer. In a feed-

forward configuration, information starts at the input

later and moved towards the output layer. The goal is

that data will come in though the input, and a

decision about what the data means will leave

through the output.

Figure 1: Diagram of a generic neural network

Input Layer

The input layer is simply made of the numbers being

passed into the system. Every input number is

represented by a circle. For example, if a neural

network were built to recognize, and categorize

apples and oranges in an image each input in the

input layer could be an R, G, or B pixel value of a

pixel within the image. In this setup, the network

diagram would need as many input circles as there

are pixels in the image (Figure 2).

Maximum Red: Neural Prosthetic

2

Figure 2: Neural network that finds apples and oranges

It is important to note that in practice creating a

neuron for each pixel in an image recognition

problem is usually too complicated. Instead, some

sort of feature extraction is used to find significant

information and give it to the neural network. In the

example of apple vs orange classification, one useful

feature to extract could be how much orange, or how

much red is in the picture. That, along with some

other features, will be far simpler to process than

pixel values.

Hidden Layers

Hidden layers are the layers between the input and

output layers and the hidden layers consist of every

circle between the input and output. In a hidden

layer, each bubble is a neuron and the connections of

each neuron are represented by the lines connecting

each neuron to its neighbors. The neuron’s

connections closer to the input layer are considered

the inputs for that neuron, and the ones on the output

sides are the output connections. In a fully connected

layer, neurons pass their information to all the

neurons in the next layer. Fully connected networks

tend to be computationally expensive and many

workarounds exist such as convolutional neural

networks.

Hidden layers have many parameters about them that

can be tweaked compared to the input and output

layers. This includes the number of neurons per layer

and the number of hidden layers. The number of

neurons required for a layer is determined by the

complexity of a problem. One general rule of thumb

is that, supposing that inputs and outputs are based

on two features, the number of intersecting lines

needed to separate the inputs and outputs on a graph

correspond to the minimum number of neurons

needed in a hidden layer. By this rule, if the input

and output data is linearly separable only an input

and output layer are needed. Generally, classification

problems don’t use more than two hidden layers.

Figure 3: How many hidden neurons are needed?

Output Layer

The output layer, like the hidden layers, is also made

of neurons. The only difference is that the outputs of

this layer of neurons are the network’s solution to the

problem. No line is drawn from the neuron bubbles

of the output layer to anywhere else because the

pathway ends here. Finding the number of neurons in

this layer is simple: conventionally it is just the

number of answers the problem can have. In the case

of a network that finds apples and oranges the output

could be two neurons: one apple neuron and one

orange neuron. The apple and orange neurons can

each report a confidence value of whether an apple

or orange is found. Another option could be each

output neuron giving a one or zero based on whether

the fruit is present. How the outputs formatted

depends entirely on what it will be used for and is up

to the designer. For example, network that “reads”

3

letters of the alphabet would probably have 26

output neurons.

Anatomy of a neuron
The next step in understanding how a neural network

works is to understand how an individual neuron

works. In a neuron, all information is processed the

same way.

Figure 4: Anatomy of a neuron

Weights

First, every input to the neuron is multiplied by a

weight, or weighted. Weights for each input are

different and correspond to what the neuron believes

is the relationship between this input and the desired

output. For example, if the input had absolutely no

correlation with the output, the weight for that input

might fall to be 0 or near 0. Next, the neuron takes

the sum of all the inputs as well as the bias in order

to combine them so they can be placed in the

activation function.

Activation Function

The result is then given to the activation function.

The activation function determines how much the

output of the neuron should be turned on or off given

all the weighted inputs. For example, the last

activation function of a network finding apples and

oranges will determine whether, given all the

information from the previous layer, the answer is an

apple or an orange.

Mathematically, the activation function makes the

neural network non-linear. Without an activation

function, it would be possible to model any neural

network with a single layer of neurons because the

answer would be a linear transformation of the input.

This only works if a clean line can be drawn

separating inputs and outputs. For this reason, less

linear the problem is the more neurons are required

in the hidden layers.

There are many choices for what can be used as an

activation function such as ReLu, Softmax, and

arctan, each offering their own advantages. All

activation functions follow the same rules: they must

be non-linear and differentiable. A popular function

is the sigmoid function:

𝑓(𝑥) =
1

1 + 𝑒-𝑥

Figure 5: Sigmoid function

The sigmoid function can take any real number and

converts it to a value between 1 and 0. Its advantage

is its strong roots in stochastic systems. Its

disadvantage is its shallow slope at its extremes

which affect learning speed.

Finally, with the data through the activation function,

the result is given to each neuron the in the next

layer, or, if it is the output layer the result is the

output.

Training
Neural networks are a form of machine learning, and

for a machine to learn it must be taught. This tech

note will only discuss supervised learning as it is

relevant to the Team Maximum Red senior design

project.

To begin supervised learning we must start with

labeled data. In the case of apples and oranges we

must have many images of apples and oranges and

4

already know which one is an apple and which one is

an orange. This is called our training set.

Backpropagation

Learning works by adjusting the weights of each

neuron as a function of the error, cost, or loss found

in the output of a neural network vs the desired

output. The process of learning in a neural network

is called backpropagation. It is called this because

error is found and propagated backwards through

each layer of the network while weights are adjusted.

The idea is to adjust the weights based on how much

they affect the error. To find out how the weights

affect the error we need:

1. The partial derivative of error with respect to

the output of the neuron

𝜕𝐸

𝜕Out

2. The partial derivative of output with respect

to the input of the neuron

𝜕Out

𝜕In

3. The partial derivative of the input with

respect to the weights of the neuron

𝜕In

𝜕𝑊

The error can be found using an error function such

as cross entropy or means squared error.

𝐸 =
−1

𝑛
∑ (𝑎𝑖 × 𝑙𝑛(Out𝑖) + ((1 − 𝑎𝑖) × 𝑙𝑛(1 − Out𝑖)))

𝑛

𝑖=1

Equation 1: cross entropy formula n = # of neurons, a = right answer,
Out = neuron's answer

Then, calculate the derivative of the error formula

and activation function used in order to use it in the

weight adjustment formula.

𝜕𝐸𝑖

𝜕Out𝑖
=

−𝜕(𝑎𝑖𝑙𝑛(Out𝑖) + (1 − 𝑎𝑖)𝑙𝑛(1 − Out𝑖))

𝜕Out𝑖

𝜕𝐸𝑖

𝜕Out𝑖
= − (𝑎𝑖 (

1

Out𝑖
) + (1 − 𝑎𝑖) (

1

1 − Out𝑖
))

Equation 2: Partial derivative of the cross-entropy formula for a single
output

Combining all three we can get the partial derivative

of the error with respect to the weight of an input on

the neuron. In essence we have the “slope” of the

error vs weight function in and we know in which

direction to step in order to reduce the error.

𝜕𝐸

𝜕𝑊
=

𝜕𝐸

𝜕Out

𝜕Out

𝜕In

𝜕In

𝜕𝑊

Equation 3: Slope of Error over Weight

Figure 6: Backpropagation on a single neuron

Gradient Descent

So, we now reduce each weight by the slope times

some “learning rate.” The “learning rate” is

essentially the size of each step taken. Because we

are going down the slope of the error function to get

less error these methods are referred to as “gradient

descent.” Some more advanced gradient descent

algorithms include terms such has “momentum”

which can change the size of the steps taken based

on previous steps. However, a very simple weight

adjustment formula would look like this:

𝑊𝑛𝑒𝑤𝑖
= 𝑊𝑜𝑙𝑑𝑖

− (learning rate)
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑊𝑜𝑙𝑑𝑖

Equation 4: Simple gradient descent equation

5

This process must be repeated for every weight of

every neuron in every layer. For neurons connecting

to multiple neurons on their output side, the partial

derivative of error with respect to each one of the

outputs must be found in order to get a partial

derivative of total error vs output. So, the error of the

last layer must be fully computed before

backpropagation i the next layer can begin.

Because backpropagation is computationally

expensive, error can be accumulated over more than

one training example before weights are updated.

Giving the whole training set is given before

updating weights is called “batch” gradient descent.

Giving only a small part of the set is called “mini

batch” gradient descent. And giving only one

example is called “stochastic” gradient descent

because its direction will be more random.

As a result of all these calculations. the most

computationally expensive part of making a neural

network is usually training it. But there is more, this

whole process only adjusted the weights by one step

in the right direction. Much like a student studying

for an exam or memorizing flashcards we must

repeat this training and adjustment many time over a

complete training data set after all, you probably

wouldn’t be good at something after only practicing

it once. The number of times the network goes

through the whole data set is called the epoch.

Conclusion
Though there are many actual design choices for a

classifying feed forward neural network using

supervised learning that make ANNs different from

one another they all follow these same general rules

and structures. Hopefully, this gives some insight as

to how the computer is “thinking” in the neural

prosthetic project.

To take another look at some of the topics glossed

over there are links to some free online articles in the

References section. I would recommend [8] for

convolutional methods, [10] for activation functions,

[6] for learning rate, [9] to get started coding on your

own, and [5] for a full mathematical

backpropagation walkthrough.

References

1. Yadav, Neha, Yadav, Anupam, and Kumar, Manoj. An

Introduction to Neural Network Methods for Differential

Equations. SpringerBriefs in Applied Sciences and

Technology. Computational Intelligence. 2015.

2. Priddy, Kevin L, Keller, Paul E, and Society of Photo-optical

Instrumentation Engineers. Artificial Neural Networks : An

Introduction. Tutorial Texts in Optical Engineering ; TT68.

Bellingham, Wash.: SPIE, 2005.

4. Braspenning, P. J., Thuijsman, F., and Weijters, A. J. M. M.

Artificial Neural Networks : An Introduction to ANN Theory

and Practice. Lecture Notes in Computer Science ; 931. Berlin ;

New York: Springer, 1995.

5. Prakash Jay. "Backpropagation is very simple. Who made it

Complicated?" Medium. April 20th 2017.

https://medium.com/@14prakash/back-propagation-is-very-

simple-who-made-it-complicated-97b794c97e5c

6. Brownlee Jason. “Understand the Impact of Learning Rate

on Neural Network Performance.” Machine Learning Mastery.

January 25 2019.

https://machinelearningmastery.com/understand-the-dynamics-

of-learning-rate-on-deep-learning-neural-networks/

7. Yadav Saurabh. “Weight Initialization Techniques in Neural

Networks.” Towards Data Science. November 9th 2018.

https://towardsdatascience.com/weight-initialization-

techniques-in-neural-networks-26c649eb3b78

8. Hue Antoine. “Dense or Convolutional Neural Network.”

Medium. January 28 2020. https://medium.com/analytics-

vidhya/dense-or-convolutional-part-1-c75c59c5b4ad

9. Spencer-Harper Milo. “How to build a simple neural

network in 9 lines of Python code.” Medium. July 21 2015.

https://medium.com/technology-invention-and-more/how-to-

build-a-simple-neural-network-in-9-lines-of-python-code-

cc8f23647ca1

10. Gharat Snehal. “What, Why and Which?? Activation

Functions.” Medium. April 14th 2019.

https://medium.com/@snaily16/what-why-and-which-

activation-functions-b2bf748c0441

11. Sarang, P. G. Artificial Neural Networks with TensorFlow

2 : ANN Architecture Machine Learning Projects. S.l.]: Apress,

2021.

https://medium.com/@14prakash/back-propagation-is-very-simple-who-made-it-complicated-97b794c97e5c
https://medium.com/@14prakash/back-propagation-is-very-simple-who-made-it-complicated-97b794c97e5c
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78
https://medium.com/analytics-vidhya/dense-or-convolutional-part-1-c75c59c5b4ad
https://medium.com/analytics-vidhya/dense-or-convolutional-part-1-c75c59c5b4ad
https://medium.com/technology-invention-and-more/how-to-build-a-simple-neural-network-in-9-lines-of-python-code-cc8f23647ca1
https://medium.com/technology-invention-and-more/how-to-build-a-simple-neural-network-in-9-lines-of-python-code-cc8f23647ca1
https://medium.com/technology-invention-and-more/how-to-build-a-simple-neural-network-in-9-lines-of-python-code-cc8f23647ca1
https://medium.com/@snaily16/what-why-and-which-activation-functions-b2bf748c0441
https://medium.com/@snaily16/what-why-and-which-activation-functions-b2bf748c0441

