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Introduction 
“Machine learning” is a term that gets thrown around 

quite a bit in the fields of electrical and computer 

engineering. Despite this, many engineers have not 

yet had to work with machine learning. The result is 

a knowledge gap on how machine learning works. 

The team Maximum Red Senior Design project used 

an Artificial Neural Network (ANN) with supervised 

learning to classify EMG signals. This tech note is 

dedicated to demystifying this part of the project by 

giving a light introduction on the basics of Neural 

Networks with supervised feed-forward learning. 

Specifically, this tech note walks though the parts of 

a feed forward neural network with supervised 

learning. Because neural networks are the subject of 

incredible amounts of research, this tech note will 

not go into detail on every subject, but it can 

hopefully be used as a strong starting point for 

further exploration. 

Anatomy of a neural network 
To understand what a neural network is, a good 

place to start would be looking at a diagram (Figure 

1). A diagram of a neural network usually looks like 

a bunch of circles in columns or rows connected 

together with lines. In such a diagram, columns can 

be organized into three categories: the input layer, 

the hidden later, and the output layer. In a feed-

forward configuration, information starts at the input 

later and moved towards the output layer. The goal is 

that data will come in though the input, and a 

decision about what the data means will leave 

through the output. 

 

 

Figure 1: Diagram of a generic neural network 

Input Layer 

The input layer is simply made of the numbers being 

passed into the system. Every input number is 

represented by a circle. For example, if a neural 

network were built to recognize, and categorize 

apples and oranges in an image each input in the 

input layer could be an R, G, or B pixel value of a 

pixel within the image. In this setup, the network 

diagram would need as many input circles as there 

are pixels in the image (Figure 2).  

Maximum Red: Neural Prosthetic 



 

 
2 

 

Figure 2: Neural network that finds apples and oranges 

It is important to note that in practice creating a 

neuron for each pixel in an image recognition 

problem is usually too complicated. Instead, some 

sort of feature extraction is used to find significant 

information and give it to the neural network. In the 

example of apple vs orange classification, one useful 

feature to extract could be how much orange, or how 

much red is in the picture. That, along with some 

other features, will be far simpler to process than 

pixel values.  

Hidden Layers 

Hidden layers are the layers between the input and 

output layers and the hidden layers consist of every 

circle between the input and output. In a hidden 

layer, each bubble is a neuron and the connections of 

each neuron are represented by the lines connecting 

each neuron to its neighbors. The neuron’s 

connections closer to the input layer are considered 

the inputs for that neuron, and the ones on the output 

sides are the output connections. In a fully connected 

layer, neurons pass their information to all the 

neurons in the next layer. Fully connected networks 

tend to be computationally expensive and many 

workarounds exist such as convolutional neural 

networks.  

Hidden layers have many parameters about them that 

can be tweaked compared to the input and output 

layers. This includes the number of neurons per layer 

and the number of hidden layers. The number of 

neurons required for a layer is determined by the 

complexity of a problem. One general rule of thumb 

is that, supposing that inputs and outputs are based 

on two features, the number of intersecting lines 

needed to separate the inputs and outputs on a graph 

correspond to the minimum number of neurons 

needed in a hidden layer. By this rule, if the input 

and output data is linearly separable only an input 

and output layer are needed. Generally, classification 

problems don’t use more than two hidden layers. 

 

Figure 3: How many hidden neurons are needed? 

Output Layer 

The output layer, like the hidden layers, is also made 

of neurons. The only difference is that the outputs of 

this layer of neurons are the network’s solution to the 

problem. No line is drawn from the neuron bubbles 

of the output layer to anywhere else because the 

pathway ends here. Finding the number of neurons in 

this layer is simple: conventionally it is just the 

number of answers the problem can have. In the case 

of a network that finds apples and oranges the output 

could be two neurons: one apple neuron and one 

orange neuron. The apple and orange neurons can 

each report a confidence value of whether an apple 

or orange is found. Another option could be each 

output neuron giving a one or zero based on whether 

the fruit is present. How the outputs formatted 

depends entirely on what it will be used for and is up 

to the designer. For example, network that “reads” 
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letters of the alphabet would probably have 26 

output neurons.  

Anatomy of a neuron 
The next step in understanding how a neural network 

works is to understand how an individual neuron 

works. In a neuron, all information is processed the 

same way. 

 

Figure 4: Anatomy of a neuron 

Weights 

First, every input to the neuron is multiplied by a 

weight, or weighted. Weights for each input are 

different and correspond to what the neuron believes 

is the relationship between this input and the desired 

output. For example, if the input had absolutely no 

correlation with the output, the weight for that input 

might fall to be 0 or near 0. Next, the neuron takes 

the sum of all the inputs as well as the bias in order 

to combine them so they can be placed in the 

activation function. 

Activation Function 

The result is then given to the activation function. 

The activation function determines how much the 

output of the neuron should be turned on or off given 

all the weighted inputs. For example, the last 

activation function of a network finding apples and 

oranges will determine whether, given all the 

information from the previous layer, the answer is an 

apple or an orange. 

Mathematically, the activation function makes the 

neural network non-linear. Without an activation 

function, it would be possible to model any neural 

network with a single layer of neurons because the 

answer would be a linear transformation of the input. 

This only works if a clean line can be drawn 

separating inputs and outputs. For this reason, less 

linear the problem is the more neurons are required 

in the hidden layers.  

There are many choices for what can be used as an 

activation function such as ReLu, Softmax, and 

arctan, each offering their own advantages. All 

activation functions follow the same rules: they must 

be non-linear and differentiable. A popular function 

is the sigmoid function: 

𝑓(𝑥) =
1

1 + 𝑒-𝑥
 

 

Figure 5: Sigmoid function 

The sigmoid function can take any real number and 

converts it to a value between 1 and 0. Its advantage 

is its strong roots in stochastic systems. Its 

disadvantage is its shallow slope at its extremes 

which affect learning speed. 

Finally, with the data through the activation function, 

the result is given to each neuron the in the next 

layer, or, if it is the output layer the result is the 

output. 

 

 

Training 
Neural networks are a form of machine learning, and 

for a machine to learn it must be taught. This tech 

note will only discuss supervised learning as it is 

relevant to the Team Maximum Red senior design 

project.  

To begin supervised learning we must start with 

labeled data. In the case of apples and oranges we 

must have many images of apples and oranges and 
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already know which one is an apple and which one is 

an orange. This is called our training set. 

Backpropagation 

Learning works by adjusting the weights of each 

neuron as a function of the error, cost, or loss found 

in the output of a neural network vs the desired 

output. The process of learning in a neural network 

is called backpropagation. It is called this because 

error is found and propagated backwards through 

each layer of the network while weights are adjusted. 

The idea is to adjust the weights based on how much 

they affect the error. To find out how the weights 

affect the error we need: 

1. The partial derivative of error with respect to 

the output of the neuron 

𝜕𝐸

𝜕Out
 

2. The partial derivative of output with respect 

to the input of the neuron 

𝜕Out

𝜕In
 

3. The partial derivative of the input with 

respect to the weights of the neuron 

𝜕In

𝜕𝑊
 

The error can be found using an error function such 

as cross entropy or means squared error. 

𝐸 =
−1

𝑛
∑ (𝑎𝑖 × 𝑙𝑛(Out𝑖) + ((1 − 𝑎𝑖) × 𝑙𝑛(1 − Out𝑖)))

𝑛

𝑖=1

 

Equation 1: cross entropy formula n = # of neurons, a = right answer, 
Out = neuron's answer 

Then, calculate the derivative of the error formula 

and activation function used in order to use it in the 

weight adjustment formula.  

𝜕𝐸𝑖

𝜕Out𝑖
=

−𝜕(𝑎𝑖𝑙𝑛(Out𝑖) + (1 − 𝑎𝑖)𝑙𝑛(1 − Out𝑖))

𝜕Out𝑖
 

𝜕𝐸𝑖

𝜕Out𝑖
= − (𝑎𝑖 (

1

Out𝑖
) + (1 − 𝑎𝑖) (

1

1 − Out𝑖
)) 

Equation 2: Partial derivative of the cross-entropy formula for a single 
output 

Combining all three we can get the partial derivative 

of the error with respect to the weight of an input on 

the neuron. In essence we have the “slope” of the 

error vs weight function in and we know in which 

direction to step in order to reduce the error.  

𝜕𝐸

𝜕𝑊
=

𝜕𝐸

𝜕Out

𝜕Out

𝜕In

𝜕In

𝜕𝑊
 

Equation 3: Slope of Error over Weight 

 

Figure 6: Backpropagation on a single neuron 

Gradient Descent 

So, we now reduce each weight by the slope times 

some “learning rate.” The “learning rate” is 

essentially the size of each step taken. Because we 

are going down the slope of the error function to get 

less error these methods are referred to as “gradient 

descent.” Some more advanced gradient descent 

algorithms include terms such has “momentum” 

which can change the size of the steps taken based 

on previous steps. However, a very simple weight 

adjustment formula would look like this: 

𝑊𝑛𝑒𝑤𝑖
= 𝑊𝑜𝑙𝑑𝑖

− (learning rate)
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑊𝑜𝑙𝑑𝑖

 

Equation 4: Simple gradient descent equation 
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This process must be repeated for every weight of 

every neuron in every layer. For neurons connecting 

to multiple neurons on their output side, the partial 

derivative of error with respect to each one of the 

outputs must be found in order to get a partial 

derivative of total error vs output. So, the error of the 

last layer must be fully computed before 

backpropagation i  the next layer can begin. 

Because backpropagation is computationally 

expensive, error can be accumulated over more than 

one training example before weights are updated. 

Giving the whole training set is given before 

updating weights is called “batch” gradient descent. 

Giving only a small part of the set is called “mini 

batch” gradient descent. And giving only one 

example is called “stochastic” gradient descent 

because its direction will be more random. 

As a result of all these calculations. the most 

computationally expensive part of making a neural 

network is usually training it. But there is more, this 

whole process only adjusted the weights by one step 

in the right direction. Much like a student studying 

for an exam or memorizing flashcards we must 

repeat this training and adjustment many time over a 

complete training data set after all, you probably 

wouldn’t be good at something after only practicing 

it once. The number of times the network goes 

through the whole data set is called the epoch.  

Conclusion 
Though there are many actual design choices for a 

classifying feed forward neural network using 

supervised learning that make ANNs different from 

one another they all follow these same general rules 

and structures. Hopefully, this gives some insight as 

to how the computer is “thinking” in the neural 

prosthetic project.  

To take another look at some of the topics glossed 

over there are links to some free online articles in the 

References section. I would recommend [8] for 

convolutional methods, [10] for activation functions, 

[6] for learning rate, [9] to get started coding on your 

own, and [5] for a full mathematical 

backpropagation walkthrough. 
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