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Introduction 
All existing materials carry information that can be 

processed by a data analysis. The field of material 

informatics (MI) integrates material science with data 

science to build technologies for better aiding 

scientists in various fields These technologies find 

materials with preferred properties, distinguish 

materials with optimal structures or composition, 

generate microstructures or nanostructures, and 

discover novel materials—such as materials for 

thermoelectric, lithium-ion batteries, and nitride 

semiconductors. [2] By assisting the experiment 

process, the duration and cost of the research and 

fabrication of the materials are significantly reduced. 

One application of MI in photonics aims to develop 

different types of structures that manipulate light—

such as a conventional convex lens. A conventional 

lens is a transparent material with at least one curved 

side to either concentrate light or disperse light. To 

concentrate light, a convex or refractive lens uses the 

phenomenon of refraction, where the bending of a 

wave occurs due to the changes in the speed of the 

wave as it travels into another medium (i.e., light 

wave traveling from air into glass) as shown in Figure 

1(a).  In the recent decade, many applications with 

refractive lenses—such as cameras, telescopes, and 

imaging—have been replaced with flat lenses due to 

its increased focusing efficiency. The focusing 

efficiency is the measure of the intensity of the light 

gathered at the point at which the light wave meets 

after exiting the lens. These flat lenses mimic the 

focusing of light that is achieved through a refractive 

lens without changes to thickness. 

All flat lenses are designed and fabricated differently. 

A diffractive optical element (DOE) or diffractive 

lens focuses light waves by exploiting the 

phenomenon of diffraction, which occurs when the 

light wave passes across an edge that results in the 

bending of the wave as demonstrated in Figure 1(b). 

In photonics, a standard DOE is a multi-level 

diffractive lens (MDL). MDLs have spatially 

arranged sets of concentric circles on the substrate 

(i.e., glass wafer) known as the Fresnel Zone Plate 

(FZP) pattern. Each concentric circle has a blazed 

phase structure, which resembles stair-like structure 

shown in Figure 2(a). [4, 6] These structures ensure 

optimal bending of the light waves.  Due to the simple 

design and accessibility of MDLs, these lenses are 

commonly found in applications like optical 

communications, imaging, refractive optics aberration 

correction, coherent beam addition, and laser beam 

shaping. [6, 1, 2] Recently, a DOE that has become 

increasingly common in the same applications as the 

MDLs are metalenses. A metalens is formed by 

distinct assembly of nanostructures on a substrate, as 

shown in Figure 2(b). [3, 6] These nanostructures 

enable the lens to fine-tune the polarization of light to 

attain a higher focusing efficiency. Because of these 

structures and the complexity of the design, the 

production of this lens requires a high-cost 

nanofabrication. 
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Figure 1. Demonstrates the bending of light with (a) 

refractive lenses of different thicknesses and (b) diffractive 
lenses.  

 

 
 

Figure 2.  Schematic representation of a (a) multilevel 
diffractive lens (MDL) and (b) metalens.  
 

Currently, the process of designing the MDL and 

metalens uses existing research and theories from the 

field of photonics and a simulation tool called CST 

Studio Suite to verify the performance of the designs 

before the lenses are fabricated. This process 

constrains the designs for the lenses to known 

correlations and optimizations to improve the 

focusing efficiency. Thus, this can be a drawn-out 

process and resources may be better directed 

elsewhere if the process were streamlined. A method 

of accelerating this process is through machine 

learning (ML). 

Background 

Machine Learning Algorithms 
The widespread utilization of ML has aided and 

expedited the research process in photonics. Since 

ML is data-driven, the computer algorithms utilize the 

necessary data to train and develop the algorithms to 

extrapolate correlations. MI employs a standard set of 

steps to validate the application of ML and the 

generated material, as shown in Figure 3. In 

particular, the ML algorithms applied to the 

optimization of the MDL and metalens are neural 

networks (NN) and Bayesian optimization, 

respectively. 

 
Figure 3. A general schematic for a MI discovery 
pipeline. 

 
Neural Networks 

NN is a collection of neurons, where the neurons 

closely resemble and function like the ones found in 

our bodies. As shown in Figure 4, a neuron is able to 

receive inputs at the input layer. The inputs are then 

processed in the hidden layer and sent to output layer 

of the neuron. The hidden layer processes the inputs 

by transforming them into inputs that are usable in the 

output layer. From there, the outputs in the output 

layer are delivered to the next neurons in the network. 

This sequence of events is repeated in the network 

until a decision is reached. Thus, NN reproduce the 

way a human brain learns and solves problems.  

 

 
Figure 4. Schematic representation of a neural network. 
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Bayesian Optimization 
Bayesian optimization is a design algorithm that 

applies a probabilistic approach to determine an 

approximated optimization for the black-box 

function. A black-box function is an unknown process 

between the input and output developed by the model 

of the approach. The optimal model is generated by 

hyperparameters, which are standards that supervise 

the learning process of the algorithm. In a simplified 

model, the algorithm takes an input that is funneled 

into a black box, which then generates an optimized 

output on the basis of predicted values and variances. 

[2] 
 

Related Techniques for DOE Design 

Multi-level Diffractive Lens (MDL) 

For most DOE designs, the design technique applies 

the application of the Fresnel diffraction theory.1 The 

theory utilizes mathematical interpretations that 

compute the behavior of the light wave at the desired 

location on the output plane of the substrate. The 

inputs to the NN are the distances between each of the 

concentric circles on the substrate and the 

input/output plane of the DOE. [1] Since the design is 

categorized as an optimization problem, a NN with 

one hidden layer allows the technique to have a low 

computational cost and complexity. Only one hidden 

layer is required because one is enough to encompass 

the output to an array of DOE designs. In a simplified 

model, a more complex problem requires more 

hidden layers and computational cost to determine the 

output. The output should be the architecture of the 

microstructures required to achieve the optimal 

focusing efficiency. [1]  

Metalens 

An artificially structured material that is engineered 

to possess desired properties over a broad range of 

wavelengths is classified as an electromagnetic 

metamaterial. To tailor an optimized electromagnetic 

metamaterial, the design of the nanostructures must 

identify a geometry that maximizes the objective 

properties. These properties include the modulation of 

heat conduction, identification of energetically stable 

structures, control of optical scattering and cloaking 

effects, optimization of thermal conductance and 

thermoelectric figure of merit. [2] As described in 

Figure 5, the objective properties are identified by a 

combination of electromagnetic simulation and 

Bayesian optimization to develop the most optimal 

electromagnetic metamaterial from the predicted 

metamaterials. An electromagnetic simulation tool is 

a software that is capable of modeling 

electromagnetic devices. In this case, the simulation 

tool has the ability to model the generated 

metamaterial and determine the objective properties. 

 

 
Figure 5. Schematic of the optimization method using 

electromagnetic simulation and Bayesian optimization.2 

 

This technique involves the development of 

metamaterials with a user-specified number of layers 

with uniform thicknesses, where each layer can be 

either Germanium (Ge), Silicon (Si), and Silicon 

Oxide (SiO2). After the predicted metamaterials are 

generated, the spectral emission from the 

metamaterial is computed using the simulation. An 

open-source library models the Bayesian 

optimization that is utilized to determine the 

optimized metamaterial. [2] 

 

Proposed Techniques for DOE 
Design 

Multi-level Diffractive Lens (MDL) 
The related technique mentioned in the background 

pertains to a generalized solution for the design of 

DOEs. To make the solution adjusted for MDLs, the 

related technique will need to be slightly modified. 

The blazed phase structural architecture is unique to 

MDLs. They indicate the output architecture of the 

microstructures for the lens is already known. To 

maximize the focusing efficiency averaged over all 

wavelengths of interest, the height of the desired 

blazed phase structure on the MDL can be fine-tuned. 

[6]  
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The proposed modifications to the related technique 

would concern the inputs, outputs, and the NN 

algorithm. An additional input to the NN is the height 

of the blazed phase structures on the MDL. The 

revised output of the NN is the adjusted architecture 

of the MDL with an optimized focusing efficiency.  

 

 
Figure 6. Schematic of the method for computationally 
designing an optimal metalens. 

Metalens 
Since metamaterials are the generalized form of 

metalens, the related technique detailed in the 

background needs to be modified to develop an 

optimized metalens. The modifications to the 

technique pertain to the unit layer elements, the 

electromagnetic simulation tools, and the addition of 

an experimental validation process. For the 

composition of the metalens, the unit layers will be 

assembled from the collection of compounds: Ge, 

Indium Phosphide (InP), Hafnium Oxide (HfO2), or 

Silicon Nitride (Si3N4). These compounds are 

commonly found in photonic applications. To 

simulate the predicted metalenses, an additional 

simulation tool called CST Studio Suite will be used 

to model them. The remainder of the technique will 

be the same as the one described in the background 

with the addition of an experimental validation 

process. This validation process will incorporate 

fabrication and experimental analysis to ensure that 

the fabricated optimized metalens is comparable to 

the computationally designed one. The modified 

technique is shown in Figure 6.  

 

Conclusion 
Both of the proposed techniques consider ML as a 

powerful application that has the capabilities to 

generate optimized materials in an efficient and 

accurate manner. This paper serves as a proposal for 

techniques for the design of DOEs, specifically 

MDLs and metalenses. For further application of 

these techniques, the computationally designed 

MDLs and metalenses can greatly reduce the design 

time when these techniques have a low computational 

cost and complexity when compared to preexisting 

techniques in the field. In addition, these techniques 

can decrease the number of the fabrication and 

alignment issues that may not line up with the 

designed values, which can minimize the cost of 

fabrication. This can contribute to an acceleration of 

findings in the field of MI.  
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