

ECE Senior Capstone Project 2021 Tech Note

Linting And the Roles Played by the Static Code

Analysis Methods and Tools in its implementation.

By Siegfred Madeghe, ECE ‘21

__

Introduction

Linting is an automated checking of a source code for
programmatic and stylistic errors. In computerized
systems, the linting implementation uses a tool
known as a linter, which analyzes computer code
without executing it.

Historically, linting started in 1978 after being
invented by a computer scientist—Stephen C.
Johnson—while working at Bells Labs. Stephen was

debugging the Yet Another Compiler-Compiler
(YACC) grammar program that he was writing for
the C programming language when he invented
linting. Since then, the invention of this technology
has been used widely across different programming
languages to analyze and generate computer programs
quickly.

The development of this tool has now enabled
programmers—whether working for software or
hardware systems (using Hardware Description
Languages)—to “concentrate at one stage of the

programming process solely on the algorithms, data
structures, and correctness of the program, and then
later retrofit, with the aid of lint, the desirable
properties of universality and portability” [2].

Hardware Description Language

Hardware Description Languages (HDL) are
specialized computer languages used to describe the
structure and behavior of electronic circuits. HDLs
have improved the speed and efficiency in designing
and building digital systems; thus, accelerating the
development of complex digital systems.

There are two main hardware description languages:

Verilog and Very High-Speed Integrated Circuits
(VHSIC) Hardware Description Language, shortened
to VHDL. Both Verilog and VHDL implement
register-transfer-level (RTL) abstractions; however,
VHDL is more verbose than Verilog. Therefore,
VHDL designs are easy to understand and often catch
errors missed by Verilog.

It is crucial to understand that HDL codes, like other
programming codes, are prone to errors. This
observation is factual, although HDLs programming
flow is unlike the usual software programming

languages. For computer codes generated by general
programming languages execute serially while those
by HDL execute in parallel. Given the similarity of
the problem—the need to produce error-free code—
it is then possible and needful to implement linting
tools for HDL.

Turquoise Blue: Linting Toolchain for VHDL Programming

Department of Electrical and Computer Engineering Senior Project Handbook:

http://sites.tufts.edu/eeseniordesignhandbook/

Factors to Consider Before Implementing a Linter for
HDLs

A linter for an HDL platform must consider these
crucial criteria: First, designers must decide what kind
of errors the linter should detect. Second, the type of
static code analyzer to link with the linter. Third,
error reporting methodology. And, fourthly, the
protocols used to upload the reviewed code into the
specified electronic device.

Among these four criteria, however, the first two are
the most important ones—because specifying the
types of errors for the linter to analyze helps to scope

the tool's functionalities. As a result, determining the
supporting tools to be incorporated into the linter
becomes easier: more errors need a more powerful
static code analyzer.

Static Code Analyzer

A static code analyzer is a tool that aims at exposing
possible vulnerabilities in a computer program before
its execution. Technically, it is a good design strategy
to implement the static code analyzer before the
compilation process. Because "roughly half of the

security [and programming] weaknesses get
introduced during coding" [10]. A source code must
find weaknesses and prepare a report used by other
tools to report and fix the found errors. Depending
on the implementation of the static code analyzer, the
development of a mechanism to suppress false error
flags to enhance practicability in repeated code
scanning is paramount [1][6][8].

It is crucial to note that "False positives are a critical
factor in static code analysis" [10]. Because static code
analysis issues are naturally 'undecidable': computed

model approximations lead to misses, arising when
the static analyzer misses the source code weaknesses
or report the correct code as a weakness. Therefore,
in choosing a static analyzer tool, designers must
choose tools with acceptably low false-positive rates.

Figure 1: Code Analyzer Flow [3]

Types of Static Code Analyzers

The implementation of a static code analyzer can take
different forms. But majorly, static code analyzers
exist in two classes: analyzers that directly analyze
source code and analyzers that analyze compiled byte
code. Direct code analyzers work 'directly' on the
source code written by the programmer. This kind of
implementation is always beneficial for source codes
with less than a hundred thousand lines of code.
Therefore, this choice makes it better for the static
code analyzer for small projects demanding at most a
thousand lines of code.

On the other hand, the compiled byte code is
relatively faster because it works on a compiled code.
This kind of implementation is better for programs
with more than a thousand lines of code. Regardless
of the implementation method, though, both options
share the same logical flow: They both inspect the
program and formulate an abstract representation of
the program used to match the selected error scheme.
Moreover, in a static code analyzer, equipping the
tool with data-flow analysis capabilities improves the
analyzer's ability to perform vulnerability checking.
This addition makes the tool robust towards any

security vulnerabilities to be exploited by hackers.

Static Code Analyzer to Consider in the Making of a
Linter

A linter can use static code analyzers like Flex and
Bison in its implementation. Flex and Bison are tools
that build programs that handle structured inputs.
Initially, they were the fundamental building tools for
compilers. However, recently, they have been used as
building blocks in developing tools like parsers and
static code analyzers. A static code analyzer scans the

parsed code is for errors. This scanning process works
"by looking for patterns of characters in the input"
[9]. A direct way to explain the theory behind these
patterns is by using "regular expression, shortened to
reflex or regexp" [9].

Flex programs include a list of regexps with
instructions that tell the program what to do when
the input code matches them. This list is called
actions. Therefore, in summary, a flex scanner
inspects the input code by comparing it with the
regexps included in the list—actions—and then
giving an appropriate message in case of mismatches.

Moreover, flex scanners produce a list of tokens

handled by a parser. Hence, every time a program
inquires for a token, a function call is called, and then
tokens are returned. Each of these tokens has two
parts: the token itself and its value. There is no specific
structure to how the token values are assigned,
"except that the token zero means end-of-file" [9].
So, when Bison generates a parser, it generates token
numbers as well, beginning from 258. This token
generation process happens automatically, and it is
effective for "it avoids collisions with literal character
tokens" [9][5].

Constructing a Good Linting Tool

The qualities of a robust linting tool are diverse. But,
in general, a well-designed linting tool is safe, easy-
to-use, reliable, and effective. These characteristics
must be thought of and systematically incorporated
into the tool's design from the beginning of the
designing process [4].

However, depending on the quantity and complexity
of the errors that the linter will lint, a linter can make
use of open toolchains in its implementation. These
toolchains provide already linked tools that aid in

reducing production time while increasing security
compactness. The linter should also incorporate
UI/UX tools that improve usability—since a smooth
user experience should also be a goal that the linter
must target.

Also, given that the static code analysis is rule-driven,
it is crucial to ensure proper implementation of the
design rules. This demand provides assurance and
safety compliance protocols in designing digital
systems; therefore, improving code security—which
is a critical issue recently, as it is pivotal to analyze

code for potential vulnerabilities from different
perspectives [11][6][7].

Conclusion

Designing digital systems using computers is
challenging, especially now that there has been a
profound rise in security vulnerabilities. Also, for
beginners, hands-on experience in software that
implements HDL is critical. Therefore, this software
must provide thoughtful, easy-to-understand error
messages caught by the static code analyzer.

Reference

1. Chelf, Ben, and Christof Ebert. "Ensuring the Integrity of

Embedded Software with Static Code Analysis.", May/June

2009 7. Black, Paul E. "SAMATE and Evaluating Static Analysis

Tools.", September 2007.

2. https://en.wikipedia.org/wiki/Lint_(software)

3. https://www.softscheck.com/en/security-

consultancy/static-source-code-analysis/

4. Chinchani, Ramkumar, and Eric Van Den Berg. "A Fast

Static Analysis Approach to Detect Exploit Code Inside

Network Flows.", 2005.

5. Bush, William R., Jonathan D. Pincus, and David J. Sielaff.

"A Static Analyzer for Finding Dynamic Programming Errors.",

December 1999 11. Bergeron, J., M. Debbabi, J. Desharnais,

M.M Erhioui, Y. Lavoie, and N. Tawbi. "Static Detection of

Malicious Code in Executable Programs.", 2001

6. Holzmann, Gerard J. “Conquering Complexity.” Computer

40 (12): 111-113, Dec. 2007. 13. “Source Code Security

Analysis Tool Functional Specification Version 1.0.” National

Institute of Standards and Technology (NIST), Special

Publication 500-268. May 2007.

7. https://techbeacon.com/app-dev-testing/3-steps-aligning-

client-side-static-code-analysis

8.

https://softwareengineering.stackexchange.com/questions/276

82/what-are-the-real-benefits-of-static-code-analysis

9. https://www.oreilly.com/library/view/flex-

bison/9780596805418/ch01.html

10. https://www.veracode.com/security/static-code-analysis

11. https://www.perforce.com/blog/qac/what-lint-code-and-

why-linting-important

12. https://barrgroup.com/Embedded-Systems/How-

To/Lint-Static-Analysis-Tool

https://en.wikipedia.org/wiki/Lint_(software)
https://techbeacon.com/app-dev-testing/3-steps-aligning-client-side-static-code-analysis
https://techbeacon.com/app-dev-testing/3-steps-aligning-client-side-static-code-analysis
https://softwareengineering.stackexchange.com/questions/27682/what-are-the-real-benefits-of-static-code-analysis
https://softwareengineering.stackexchange.com/questions/27682/what-are-the-real-benefits-of-static-code-analysis
https://www.oreilly.com/library/view/flex-bison/9780596805418/ch01.html
https://www.oreilly.com/library/view/flex-bison/9780596805418/ch01.html
https://www.veracode.com/security/static-code-analysis
https://www.perforce.com/blog/qac/what-lint-code-and-why-linting-important
https://www.perforce.com/blog/qac/what-lint-code-and-why-linting-important
https://barrgroup.com/Embedded-Systems/How-To/Lint-Static-Analysis-Tool
https://barrgroup.com/Embedded-Systems/How-To/Lint-Static-Analysis-Tool

