
 Department of Electrical and Computer Engineering
Senior Project Handbook: http://sites.tufts.edu/eeseniordesignhandbook/

ECE Senior Capstone Project 2021 Tech Notes

Mobile App Development and
User Interfaces
By Cole Taylor, ECE ‘21

Introduction
The Redisculous smart disc, seeks to provide disc golf
players with quantitative feedback on the
performance of their throws. A suite of sensors on the
disc will gather spatial data about the throw in three
dimensions. The information will then be transmitted
off the disc via Bluetooth to an iPhone. Once the data
is on the iPhone, a mobile application will process the
data and display the results to the user.

This article will focus on the iPhone stage of the
project. It will first go over a few common
architectural design patterns for developing mobile
application to demonstrate how user interfaces are
decoupled from the data processing. From there, the
report will delve deep into the concepts and process
of developing a successful user interface.

Design Process
To Understand iOS development, it is important to
look at the established architectural patterns used by
people in industry. There are three main patterns that
are used to break mobile development into more
accessible chunks. These three patterns are Model
View Controller (MVC), Model View Presenter
(MVP), and Model ViewModel (MVVM). The latter
two architectural patterns are newer variants on the
original MVC pattern.

The goal of all of these architectural patterns is to
separate the computational logic from the
presentation layer. In other words, it creates a barrier
between the user and the data the drives the
application. Since MVP and MVVM are derivatives
of MVC, all three architectures share many
similarities. The following sections will examine the
general structure of each pattern and the differences

between them. Figure 1 provides a visualization of the
three structures.

Model View Controller

MVC is made up of three layers. As the name
suggests, the three layers are the Model, the View, and
the Controller. In order to decouple these three
components as much as possible, the layers are not
aware of the state of the other layers. The layers can
only communicate through notifications. The Model
holds the application’s data, logic, and rules. The
View displays the information to the user in an
accessible format. It is updated when the Model or the
Controller sends it a notification. The Controller takes
input from the user and converts it to notifications. It
sends these notifications to the Model and the View
so that they can update the state of the application.
Figure 1 shows the direction that notifications are sent
between the three layers.

Figure 1. Diagram of MVC layer communication

Model View Presenter

MVP is also made up of three layers. The layers are
slightly different than the MVC pattern. The three
layers are the Model, the View, and the Presenter.
This variant provides more decoupling between the
View and the Model. The Model has essentiallt the

Razzmatazz: Smart Frisbee

2

same function as in the MVC pattern. However, the
View layer takes on more responsibility. The View
layer takes on the role of the Controller from MVC.
In MVP the View is not connected to the Model layer.
Thus, it has to delegate any model changes to the
Presenter layer. The Presenter is in charge of
communicating with the Model and the View. Figure
2 shows how notifications are sent in MVP.

Figure 2. Diagram of MVP layer communication

Model View ViewController

MVVC is made of three layer much like the other two
variants. It is made up of the Model, the View, and the
ViewModel. The Model is again unchanged. It
performs the same tasks in all three variants. The
View is as passive as possible in this variant. Any
logic that needs to be performed is delegated to the
ViewModel. The ViewModel is a model of the View.
It is unaware of the state of the View. The ViewModel
defines what happens when there are user inputs and
translates the model so that is can be displayed in the
View. Figure 3, shows how notifications are sent in
MVVC.

Figure 3. Diagram of MVVC layer communication

User Interfaces
A user interface is how humans interact with
technology including mobile applications Successful
user interfaces make it easy for humans to navigate

through the application and understand the
information that the application is trying to convey.
The two main components of user interfaces are data
visualization and usability.

Data Visualization

Data visualization has been around for thousands of
years. Ancient humans used images carved into cave
walls to keep track of hunting statistics. Today, data
visualization is even more important as we attempt to
understand large data sets in applications like
machine learning. Additionally, visual
representations of data can communicate information
faster and more effectively to a broad range of
knowledge backgrounds and cultures. This makes
successful data visualization important in any product
that wishers to appeal to a wide variety of people.

One of the most important choices in data
visualization is the choice of color. Color is important
when mapping data elements to a more approachable
visual form. It allows humans to quickly distinguish
between data elements in order to find the desired
information. Color separation plays the largest role in
speed and accuracy when identifying separate data
elements.

In order to understand color separation, it is important
to first understand the CIED LUV color model. Colors
are defined with three dimensions. The first
dimension is the luminance, L. L gives a value to the
brightness of a color. The seconds and third
dimensions define the chromaticity, 𝑢 and 𝑣.
Chromaticity gives a way of defining colors
independent of the brightness. This method for
defining colors is advantageous for understanding the
perceived color serperation. The main advantage is
that it is easy to calculate the separation. The
following equation can be used to find a value that
represents the perceived separation of any two colors,
Δ𝐸.

Δ𝐸 = &(Δ𝐿)! + (Δ𝑢)! + (Δ𝑣)!

Using color separation when assigning colors to data
elements can improve the speed and accuracy that a

3

user can identify the information relevant to them.
Once main case that receives the aforementioned
speed improvements is color legends for graphs or
maps. Making sure that colors on the legend
maximize the Δ𝐸 between them, can make the data
visualization much more effective.

Usability

Usability is important to think about on any platform.
Mobile applications stand out among all platforms,
because they require even more attention. The small
screen size and limited user input methods make
usability a critical issue. Usability can be broken
down into three metrics according to the International
Organization of Standards. It can be broken down into
effectiveness, efficiency, and satisfaction.
Effectiveness looks at whether or not users can
accurately achieve their goals. Efficiency examines
the resources that users require to achieve their goals.
Finally, satisfaction assesses the attitude that the user
has towards the product after use. In most cases
satisfaction follows from the first two metrics. Thus,
the main focus for usability is effectiveness and
efficiency.

Two main design trends are used in mobile
applications to better usability: skeuomorphism and
flat design. The goal of skeuomorphism is to attempt
to replicate the physical world. One the other hand,
the goal of flat design is to abandon the physical world
and rely on metaphors and symbols. Figure 4 shows
the two design trends. The calculator on the left
implements skeuomorphic design by using drop
shadows and gradients to make it look like there are
physical buttons. The calculator on the right uses flat
design.

Skeuomorphic design and flat design both have
advantages and disadvantages. Skeuomorphic design
enables mobile phone novices to more effectively
navigate applications. The realism is more
approachable for people who have little experience
with the mobile platform. The downside is that the
realism comes at a space and complexity cost. Figure
4 does a good job of demonstrating the space cost. In
order for the buttons to have effective gradients, the
text must be smaller. Flat design has the advantage of

simplicity. The buttons on the calculator don’t have
any gradients, so the text can be larger. The main
challenge with flat design is that it is not as intuitive
to new users.

Figure 4. Skeuomorphism vs flat design

Conclusion
In conclusion, the smart disk application will aim to
incorporate everything discussed in this report in order to
move towards an effective and easy to use application.
The smart disc application will use a variant of MVC to
make sure that the user interface is decoupled from the
data logic. This will allow us to focus on the different
elements in parallel. The user interface will develop
design elements in a way that integrates the data
visualization and usability in the aforementioned
guidelines. Color separation will be used so that disc golf
players can quickly identify key information. A mixture
of flat design and skeuomorphic design will be used when
implementing user interactive features. The two methods
will be used in tandem to attempt to combine the
strengths and mitigate the weaknesses. Creating a mostly
flat designs will simplify each element and make the app
more streamline. However, including some elements of
skeuomorphism will add a touch of reality so that new
users can easily understand how to interact with the
application. With all of these design criteria, the smart
disc application will be an effective and efficient way for
users to improve their disc golf performance.

References
1. Manuela Aparicio and Carlos J. Costa. Data
visualization. 3(1):7–11.

4

2. Autumn. Flat vs. skeuomorphism.

3. Leonard A. Breslow, Raj M. Ratwani, and J. Gregory
Trafton. Cognitive models of the influence of color scale
on data visualization tasks. 51(3):321–338.

4. Aymen Daoudi, Ghizlane El Boussaidi, Naouel
Moha, and S`egla Kpodjedo. An exploratory study of
MVC-based architectural patterns in android apps. In
Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, SAC ’19, pages 1711–1720.
Association for Computing Machinery.

5. Rachel Harrison, Derek Flood, and David Duce.
Usability of mobile applications: literature review and
rationale for a new usability model. 1(1):1

6. C.G. Healey. Choosing effective colours for data
visualization. In Proceedings of Seventh Annual IEEE
Visualization ’96, pages 263–270,. ACM.

7. Ankit Sinhal. MVC, MVP and MVVM design pattern.

8. Konstantinos Spiliotopoulos, Maria Rigou, and Spiros
Sirmakessis. A comparative studyof skeuomorphic and
flat design from a UX perspective. 2(2):31.

9. Alfredo Vellido Alcacena, Jos ́e David Mart ́ın,
Fabrice Rossi, and Paulo J. G. Lisboa.Seeing is
believing: the importance of visualization in real-world
machine learning ap-plications. pages 219–226.

10. Dominic Alves. iPhone Calculator Screen Print,
November 2009.

