
Department of Electrical and Computer Engineering
Senior Project Handbook: h<p://sites.tu@s.edu/eeseniordesignhandbook/

ECE Senior Capstone Project 2021 Tech Notes

TURQUOISE: A VHDL CODE ANALYZER & COMPILATION TOOLCHAIN
By Trung Truong, ECE ‘21

Introduction
VHDL (Very High Speed Integrated Circuit
Hardware Description Language) is a programming
language that describes the logical make-up of Field-
Programmable Gate Array (FPGA) and integrated
circuits (IC). While VHDL is very efficient in
describing hardware, the language can be difficult
for beginners to get started due to the concurrent
nature of the language, non-elegant syntax, and
unclear error messages. Furthermore, as most
popular VHDL development toolchains are
commercialized software (i.e. Modelsim, Xilinx
Vivado, etc.), it is difficult to customize the software
to fit beginners’ needs (i.e. verbose error message,
ease of development, etc.).

To target the issues above, we seek to design a cross-
platform, open-source VHDL development tool and
create a VHDL compilation pipeline that emphasizes
ease of development and safe code. In this paper, the
overall architecture of the final product will be
discussed. Furthermore, a comprehensive list of
features that our implemented tool provides will be
listed.

Related work
There are tools on the market that performs static
code analysis on VHDL, including VHDL Tool [1],
Sigasi, and the SAVE project [2]. However, these
tools are not open-source, and it can be difficult to
customize these software to integrate in a curriculum
targeting beginners (such as ES-4).

Meanwhile, there are open-source tools on the
market that perform VHDL compilation, simulation,
and synthesis, such as GHDL [3], and Yosys.

While these software are open for public usage, they
are difficult to configure, and it can be very
challenging and time-consuming for beginners to set
up the compilation pipeline.

Our approach
To mitigate these problems from available software,
we seek to develop an easy-to-use program
(turquoise) that targets both static code analysis
and VHDL compilation. More specifically, this
program seeks to provide ease of development by
allowing developers to develop VHDL, run
simulation from developed code, upload compiled
VHDL to the targeted hardware (Upduino v3 FPGA
board).

Targeted errors
While there are a lot of mistakes that beginners often
make when developing VHDL, we seek to focus on
a subset of errors that we believe are the most
relevant. More specifically, the following linter
features are currently supported with the
(turquoise) static code analyzer:

Syntax check
(turquoise) supports full syntax check for the
1987, 1993, 2002 versions of the IEEE 1076 VHDL
standard (and partially the latest 2008 revision)
through (GHDL) front-end.

Primitives check
(turquoise) performs syntax and semantic check
for certain primitive types and displays errors,
warning, and info when necessary

Turquoise Blue: Higher-Level Language to HDL (with IDE)

Current primitives supported includes
std_logic, std_logic_vector, bit,
signed, unsigned, integer,
boolean, time, string

Example: for the following snippet, the linter returns
this warning

Fig 1. Primitives warning

Entity/Component typecheck
(turquoise) performs signals type check when
comparing entity declaration and component
instantiation, and displays errors, warning, and info
when necessary

Port map typecheck
(turquoise) performs signals type check when
mapping signals in port map declaration, and
displays errors, warning, and info when necessary

Signal check
(turquoise) performs the following signals type
check: signals declared but not used, signals
assigned but not declared

Package check
(turquoise) performs the following package
check: deprecated package, duplicated package
import

Design flow
To achieve the goal of creating a cross-platform
static code analyzer and compiler toolchain that
eases the VHDL development process, the software
architecture has been divided into some key
components, as seen in the block diagram.

In the beginning, when developers seek to statically
check their code, they can run the static code
analysis tool through a command line interface. This
linter will take in VHDL files, create an abstract

syntax tree using pyVHDLParser (a Python
package to parse VHDL), and run subroutines that
detect faulty code.

Fig 2. Design flow

Developers can also opt out of the static code
analysis and compile the VHDL code directly. In
order to compile and synthesize VHDL,
(turquoise) is using GHDL, an open-source,
cross-platform VHDL compiler. In order to flash to
Upduino v3 board (which is the targeted FPGA
board for ES4), the GHDL Yosys plugins and
Project IceStorm are used to generate
bitstreams for the Lattice ICE40 chip from
developed VHDL code.

In addition to the ability to flash programs on FPGA,
the GHDL compiler also supports waveform
generation, which gives developers the ability to
simulate the behavior of logic circuits before flashing
the code onto the board. To display the result of the
simulation, our tool will use GTKWave.

Components
1. Compilation Toolchain
To construct the compilation toolchain, we use an
open-source compiler called GHDL. GHDL is cross-
platform, meaning it supports the most mainstream
operating systems, including Linux, Windows and
Apple OS X. It is also much more efficient than any
other interpreted simulator, as it uses a code
generator (llvm, gcc or a builtin one).

GHDL is also the most used open-source VHDL
compiler and actively maintained, making it a good

2

choice as it has been thoroughly battle-tested. Lastly,
although GHDL only compiles and simulates
VHDL, it provides a set of tools that integrate nicely
with flashing bitstreams onto the Lattice ICE40 chip
family, including the GHDL Yosys plugins and
Project IceStorm [4].

2. Waveform simulation
To display the simulated waveforms, we use a tool
called GTKWave. GTKWave is a graphical user
interface application that displays simulated output
generated by GHDL. More specifically, GHDL
outputs .vcd files after simulation, and GTKWave
reads in such files and outputs the simulated
waveforms on the graphical user interface.

Fig 3. GTKWave GUI

3. Tokenizer
In order to perform static code analysis, we must
break a VHDL file into small tokens, or tokenize, for
parsing. This is done through the Tokenize.py
module, which can be found at the project’s source
code [5]. This module uses pyVHDLParser (a 3rd
-party Python package) for tokenization.

4. State machine
In order to parse through complicated syntax, we
design a state machine or Deterministic Finite
Automata (DFA) module State.py that triggers a
state transition whenever it encounters a known
input. This allows the static code analyzer to step
through the tokenized VHDL file, and statically
analyze the VHDL code snippet by cross-referencing
the parsed output to see if it conforms to VHDL
semantics.

5. Type check and error generation
As the state machine finishes parsing through
generated VHDL tokens, we designed a module

called TypeCheck.py and UsedCheck.py
that perform entity-component and port map type
check, as well as signal check and package check as
listed in the Targeted Errors section.

Conclusion
In conclusion, our group has successfully
implemented a cross-platform, open-source VHDL
toolchain that provides interactive warning and error
messages, as well as simulation and synthesis
capabilities. Although there have been solutions on
the market for linting and compiling VHDL, our tool
has an edge when it comes to being beginner-
friendly as it focuses on ease of usage and targets
relevant mistakes. In the future, we hope to see this
tool being used in both classroom setting (such as in
ES-4) and intermediate VHDL projects.

References
1. VHDL-Tool. (2021). Retrieved May 4 from https://
www.vhdltool.com

2. Mastretti M., Busi M.L., Sarvello R., Sturlesi M.,
Tomasello S. (1996) Static Analysis of VHDL Source
Code: the SAVE Project. In: Bologna S., Bucci G. (eds)
Achieving Quality in Software. IFIP — The International
Federation for Information Processing. Springer, Boston,
MA. https://doi.org/10.1007/978-0-387-34869-8_11

3. Gingold, T. (2020). GHDL Documentation Release 1.0
- dev https://ghdl.readthedocs.io/_/downloads/en/latest/
pdf/

4. Wolf, C. (n.d.). Yosys Manual. Retrieved May 4, 2021,
from http://www.clifford.at/yosys/files/yosys_manual.pdf

5. Turquoise team. Turquoise source code. Retrieved May
4, 2021 from https://github.com/ttrung149/turquoise

3

