ECE Senior Capstone Project

2022 Tech Notes

Mahogany

Siatic Type Systems in the Implementation of
Hardware Description Languages

By Sam Cohen, ECE ’22

Introduction

Today, VHDL and Verilog are the primary hardware
description languages that engineers use to design and
simulate digital devices. These languages, however,
adopted the role of simulation and design tools far af-
ter they were initially developed. VHDL, for example,
was invented in the 1980s for documentation of digital
systems, not their simulation or synthesis [1].

But what made VHDL a good language for docu-
menting digital systems? In this paper, I will argue that
a strong, dependent type system is what makes VHDL
and Verilog excellent tools not only for simulation and
synthesis, but also for documentation of a designer’s
intent.

Figure 1 shows a VHDL program that describes a 2-
bit multiplexer. A multiplexer is like a railroad switch;
It allows any number of data inputs to be switched into
a single output using a control signal. In the example of
Figure 1, 4 data inputs, each 2 bits wide, are switched
into a single output (See Figure 2 for a diagram).

Figure 3 shows the semantically relevant portions
of the module defined in Figure 1. In essence, the
VHDL of Figure 3 specifies that each index of the ar-
ray inputs is connected to one of the inputs of the
multiplexer. Secondly, it specifies that the output of
the multiplexer, out, is the index of inputs that cor-
responds to s interpreted as an integer.

If Figure 3 specifies the entire semantics of the de-
sign, then why does it represent less than half of the
lines required to fully define the multiplexer? Though
the condensed listing does explain how data is routed
from the input to the output of the device, it does not
explain the shape of that data. In the context of digital

design, this is not only an important consideration, it is
the only consideration.

Every digital system uses bits to encode informa-
tion. In a computer, for instance, the memory space is
divided into regions for executable code and data. The
data regions are composed of words which can contain
integers, characters, floating point numbers, or other
types of information. If we were to dump the contents
of a computer’s memory onto a tape, however, and try
to extract all the integers or all the characters, it would
be impossible.

entity mux is

port (
dd0 : in std_logic_vector(l downto 0);
dl : in std_logic_vector(l downto 0);
d2 : in std_logic_vector(l downto 0);
d3 : in std_logic_vector(l downto 0);
s : in std_logic_vector (1l downto 0);

out : out std_logic_vector(l downto 0));
end mux;

architecture synth of mux is
type input_array is array (0 to 3) of
std_logic_vector (1l downto 0);
signal inputs : input_array;
begin
inputs(0) <= do;
inputs(l) <= di;
inputs(2) <= d2;
inputs(3) <= d3;

out <= inputs(to_integer (unsigned(s)));

end synth;

Figure 1: VHDL describing a 2-bit multiplexer



d0 —»| inputs(0)

dl —»| inputs(1) —oO
out
d2 —| inputs(2) —o0

d3 —»| inputs(3) —o0

Figure 2: Block diagram of the 2-bit multiplexer

begin

inputs(0) <= dO;
inputs(l) <= dl;
inputs(2) <= d2;
inputs(3) <= d3;

out <= inputs(to_integer (unsigned(s)));

end synth;

Figure 3: Semantically relevant portions of 1

This is because the data inside a digital system con-
tains no intrinsic type information. In other words, the
bits that represent integers and strings are exactly the
same, and it is up to the computer’s internal account-
ing to decide what bits correspond to integers, strings,
executable code, or garbage.

In VHDL or Verilog, all of the underlying datatypes
are identical. They are arrays of one or more bits. So,
in a sense, the only information that an HDL encodes
is type information: information about how those ordi-
nary bits are interpreted within the digital system.

Type systems often come in two flavors: nominal
type systems and structural type systems. In a nominal
type system, two types, even if identical in shape, are
not equal. Only types with the same name are consid-
ered equal [2]. At first this seems like a poor choice;
two variables that encode integers, if given different
type names, would not be considered compatible (even
though all operations on those two integers would be
defined and predictable).

It makes sense that VHDL and Verliog adopt nom-
inal type systems as opposed to structural type systems
because the value of types is so amplified in a hard-

ware description language and the distinction between
the internal representation of data is so minimal. By
assigning a type to a value, the programmer is not only
saying what shape the underlying data has, they are
asserting how the value should be used.

In the code listing of Figure 1 we see the ef-
fects of this type system in the type conversions in
the assignment of out. The variable s has type
std_logic_vector, but the array inputs must be
indexed by an integer.

In VHDL, no hardware is actually generated when
synthesizing the type conversions seen in Figure 1. The
internal representation of logic vectors and unsigned in-
tegers are identical. VHDL enforces type conversions
like these because types are used to convey intent, not
only representation.

Types can be so descriptive about the intent of a
program that, in some cases, the types are all that are
necessary to fully specify an algorithm. In one 2016
paper by Polikarpova, Kuraj, and Solar-Lezama, it was
demonstrated that polymorphic refinement types were
often sufficient to fully specify a recursive function for
a large class of algorithms [3]. In other words, some-
times the procedural parts of a program are not even
necessary to fully convey the programmer’s algorithm.
VHDLs types are not nearly as powerful, but they still
offer a high degree of clarity on what the semantics of
a program should look like given the types of its inputs
and outputs.

The Mechanics of Type Systems

Type systems have many uses ranging from optimiza-
tion to documentation, but one of the primary motiva-
tions behind type systems is to determine if programs
will cause errors when they are being run (runtime).
The obvious way to check if a program will cause an
error is to run the program, but this process can be
messy. Programs can take a long time to run and in
the case of hardware description languages, running
programs requires either simulating them using com-
plicated software or flashing them to hardware. If a
program can generate a runtime exception then it cer-
tainly not guaranteed to do so. This means that to
guarantee that a program will not generate a runtime
error, every possible execution path through the pro-
gram must be tested. For very large, interconnected

2



systems, this is not practical.

A type system solves this problem by analyzing
the text of a program without running it. The type
checker avoids the issue of convergence and can run
far more quickly than the program under analysis. But
what does the type checker analyze? The type checker
approximates the values of the program with fypes [4].

There are some aspects of a value that cannot be
captured by its type. But, type systems have been
shown to be massively effective at detecting errors in
programs despite the fact that they cannot detect every
error that might occur at runtime.

Typing Relations

A type system is specified by inference rules on the
terms of the language. Terms are the syntactic ele-
ments that make up a program at the text level. They
are also easily represented by a tree where terms may
have one or more children. Figure 4 demonstrates in-
ference rules for checking expressions in a language
where the only values are booleans and the only terms
are if expressions. In this example, true, false, and
if t; then t; else t3 are terms, and if has three chil-
dren: tq, t», and #3 which are allowed to be any other
term in the language. Programs in this simple language
are trees made up of these three components. In a more
complex language, there may be tens of possible terms.

The typing relation is composed of inference rules.
Each inference rule can be seen as a mapping from
terms to types. Each inference rule has a conclusion
(below the line) and a list of conditions (above the
line). The statement below the line holds if all of the
conditions above the line are true.

The rules in Figure 4 show how to assign a term
in the language to a type. The T-TrRute and T-FaLse
rules have no conditions. This is because when true
or false appear in the language, they must have type
Bool. The T-IF rule is more complicated. The type of
the if expression depends on the types of terms ¢, and

3.

— TTrRUE
true : Bool

——  T-FALSE
false : Bool

t; : Bool t: T t3:T

ift; thent elsers: T

T-Ir

Figure 4: Typing rules for booleans

The inference rules also show which compositions
of terms in the language are valid. For example, the
T-Ir inference rule specifies the condition that #; has
type Bool. If #; is evaluated to have a type other than
bool, this constitutes an invalid program. Using the
same type variable, T, to describe the type of 7, and t3,
the T-IF rule also specifies that the two branches of the
if must have the same type.

The inference rules also give us the outline of an
algorithm that can be used to check the type of a term.
To determine the type of a composite term, the rules
imply that we must recurse over the terms, finding the
type of each subterm and using it to inform the type of
the current term.

Therefore, the type system can be seen as perform-
ing an automatic proof of the validity of the terms by
induction over the terms. Terms that have trivial condi-
tions such as T-TRuUE and T-FALSE are considered base
cases, and terms that contain subtrees are inductive
cases [4].

The type system of VHDL is somewhat more com-
plicated than the example provided, but its type system
can be seen as an extension of the system presented.

Looking Forward

Though VHDL and Verilog remain very prominent in
the landscape of HDLs, new languages have appeared
and are gaining traction. One interesting class of lan-
guages that are now being used for hardware descrip-
tion are functional programming languages. Func-
tional languages such as OCaml and Haskell are often
accompanied by complex, versatile type systems, mak-
ing it possible to write libraries that function as domain-
specific languages whose compiler is implemented in
the host language itself. Further, functional languages

3



make use of polymorphism, higher-order functions,
and other language features that transfer well to hard-
ware description languages, but that aren’t present in
VHDL or Verilog. Though simulation and validation
of hardware is certainly possible inside functional HDL
libraries, most libraries convert the designs to VHDL
or Verilog for export to the manufacturers toolchain for
synthesis to actual FPGA hardware.

Conclusion

Type systems are an excellent tool for validation of pro-
grams and documentation of a programmer’s intent.
VHDL and Verilog use strong type systems both to
make guarantees about the correctness of programs and
to provide embedded documentation about the hard-
ware designs that they describe. In an environment
where data is entirely homogeneous without the use
of types, type systems provide an important informa-

tion carrying layer in hardware description languages, a
role which is less important in traditional programming
languages.

References

[1] David R. Coelho (1989). The VHDL Handbook.
Springer Science & Business Media. ISBN 978-
0-7923-9031-2

[2] Ivan Bach. 1982. On the type concept of Ada.
Ada Lett. 11, 3

[3] Polikarpova, N. Kuraj, 1., & Solar-Lazama, A.
(2016). Program synthesis from polymorphic re-
finement types. ACM SIGPLAN Notices, 51(6),
522-538

[4] Pierce, B. C. (2002). Types and programming
languages.




