

 ECE Senior Capstone Project 2022 Tech Notes

FPGAs for Signal Processing

By John Davis, ECE ’22

Abstract
This document serves as an overview of the
considerations that must be taken to implement high-

performance signal processing algorithms on FPGAs.

Introduction
Signals are everywhere. A signal is any piece of
information from the sound waves that carry speech

to the light waves that let us see. For the most part,
signals are not useful by themselves and need to be

transformed or processed to do something useful.
This operation is called signal processing. In the

example of sound waves, the human brain performs
signal processing to decode speech sounds into

words.
Digital signal processing (DSP) is a subclass of signal

processing that uses digital systems to do
mathematical operations on signals. Effective signal

processing requires powerful digital systems that are
very good at crunching numbers. For radio signals,

the most powerful processors make use of FPGAs.
FPGAs are reconfigurable digital circuits that can

effectively mimic complex digital behavior. In
essence, they serve as a way for developers to create

custom digital circuits without the manufacturing
overhead or cost of having to fabricate custom

silicon. FPGAs have close to the same performance
as custom silicon chips, making them useful for high

performance applications.
Digital signal processing is a common use case for

FPGAs where traditional CPUs used by computers
can be orders of magnitude too slow. The main

advantage of FPGAs over CPUs is their ability to
perform many complex calculations at the same time.

This is made possible by the FPGA's inherent
capability to configure its resources to work in

parallel whereas a CPU at best can only perform a
single instruction at a time.

Figures of Merit for DSP
Bandwidth
Bandwidth is a measure of the rate of data the system

can intake. In a water pipe, this can be thought of as the
diameter of the pipe. For a given speed of the water, a

wider pipe will be able to carry more water overall
because there is more water contained in each cross-

section.
When continuous analog signals are converted to a

digital representation, they are quantized both in time
and in magnitude. Quantization error in magnitude is
not an issue that will be discussed in this document as

it is a function of the quality of the analog-to-digital
converter hardware which is not part of the digital

signal processor. Modern analog-to-digital converters
can have bit depths of over 32bits meaning that such

error is largely negligible.
Time quantization on the other hand is critical to the

system's performance. Signals quantized in time are
subject to the Nyquist theorem which states that the

maximum recoverable frequency for a signal quantized
in time is half the quantization sampling rate

(Oppenheim).
Bandwidth is typically expressed in terms of its sample

rate in samples per second. For a system with a sample
rate of 1MHz, 1 million samples will pass through the

input port per second. The output port will also pass 1
million samples every second.

It is important to note that system bandwidth gives zero
information about the time delay between the input and

output ports. Going back to the pipe analogy, a 100-
mile-long pipe could pass 1 gallon per second all the

time but it might take over a month for a water
molecule to travel through the full length of the pipe.

Latency
Latency is a measure of the time delay between
unprocessed data into the system and processed data

out of the system. This is equivalent to the amount of

Mahogany

2

time it takes a water molecule to get through the pipe.
An extreme example to demonstrate this could be a

100-mile pipe as thin as a human hair. If this pipe has
the same rate of water molecules per second as the

wide pipe, those water molecules would have to
travel at very high speeds. As a result, it could take

on the order of minutes rather than days for the water
to travel those 100 miles.

Because digital systems tend to be clocked, data
latency is usually measured in terms of samples. For

example, a latency of 10ms in a 48kHz system would
be expressed as 480 samples.

FPGA Hardware
Logic Cells
FPGAs are composed of thousands of small logic
cells that are configured and connected to form the

behavior of the final circuit. In an FPGA, the design
is not stored in a cheap memory unit like a CPU

program and instead is stored in each of the FPGA's
logic cells. As a result, large "programs" are very

expensive for FPGAs. FPGA cost increases with
more logic cells, therefore the appropriately sized

FPGA must be chosen for the target application
(Davis).

DSP Blocks
FPGAs have specialized blocks capable of
multiplying and accumulating large numbers within

a single clock cycle. Such circuits would take up an
unreasonable amount of space if they needed to be

implemented in logic cells and are thus implemented
in custom silicon. These blocks are typically

allocated to tasks automatically by the FPGA's
development software in order to meet the design

constraints. As a result, the designer typically does
not have to worry about interfacing with DSP

blocks. This makes it easy for a design to be ported
from one FPGA to another (Davis).

Block RAM
FPGAs usually have fast dual port memory blocks
called Embedded Block RAM (EBR) that can be

written to/read from in a single clock cycle. These
blocks can be instantiated to store information when

the FPGA configures itself on startup. This allows
them to act as both a RAM and a ROM. This

property is imperative to making fast custom

algorithms because it allows for the use of lookup
tables as a replacement for complicated logic. An

example of a lookup table's use could be to calculate
ex (Davis).

Clock Rate
FPGA logic is subject to a maximum clock rate
beyond which certain hardware such as DSP blocks

and EBRs will not work. This limits the bandwidth
and increases the latency of the FPGA for signal

processing tasks. As a result, the FPGA's maximum
clock rate needs to be considered when choosing the

correct FPGA for a given task.

Effective Resource Utilization
Efficient FPGA development is an art. It is the
responsibility of the designer to utilize the FPGA's

hardware to its maximum potential. There are a few
general strategies for effective resource allocation that

every designer should be aware of.

State Machines to Emulate CPU Behavior
An FPGA can be used similarly to a CPU. An

example of such hardware could be a multiplier that
calculates the product of two variables, putting the

product in a third variable. Each state in the state
machine works similarly to a CPU assembly

instruction, moving data between the necessary
variables and moving to the next instruction (Patel).

The sacrifice in this case is both latency and
throughput since it trades hardware complexity for

clock cycles. The latency per sample is determined by
the number of states in the state machine and the

throughput is one sample per each run of the state
machine from beginning to end.

Unlike a CPU instruction, each state does not have to
execute a single task. If the same FPGA hardware is

not being utilized twice in the same instruction, there
is no issue with performing multiple computation

steps within a single clock cycle.

Pipelining
Pipelining is a similar strategy to using state machines

in that it splits the task into a set of steps, however
each step has its own dedicated hardware. This has the

advantage of giving a throughput of one sample per
clock cycle.

A good analogy for this is a bucket brigade where

3

firefighters line up in a human chain, passing
buckets from one person to the next. In this way,

data (the buckets) move through the chain with a
throughput of one sample per clock cycle, but the

latency is determined by the length of the chain.

The disadvantage when compared to state machines
is that algorithms with many multiplication steps

will use up the available DSP blocks. The choice to
pipeline versus using a state machine is one that

should be made by the designer.

Large Combinational Logic
Combinational logic occurs when the output of a

system is determined solely by its current inputs.
Each step of a state machine or pipeline tends to be

made of small chunks of combinational logic, but
those can be combined into a very large chunk of

logic by feeding each step into the next with no
latches between (Rashid). Because such algorithms

have large propagation delays, they tend to span
multiple clock cycles, though less than the time

required if the algorithm was implemented using
either method above.

Such systems tend to be very resource intensive but
have the lowest latency. Because they tend to take

more than one clock cycle to complete, large
combinational circuits will have worse throughput

compared to pipelines, but better throughput than
state machines. For the most part, large

combinational circuits should be avoided.

Nontrivial Mathematical Functions
For complicated mathematical functions, there is no
simple in-built hardware for calculation. In most

cases, approximations can be used.

Power Series Approximations
Power series approximations are an important tool to

create custom nonlinear functions. The most well-
known power series is the Taylor series. It has use

cases in many applications (Dawkins).

The Taylor series is defined as follows where a is
the center point:

Note that the only thing actually being calculated is
(x-a)n. Everything else is precomputed. The error

between f(x) and the Taylor series decreases as the
number of terms increases, so some experimentation

is required to maximize performance. Error also
increases as x diverges from the center point a.

Another strategy can be to choose a set number of
terms and run an optimization function such as least

squares to optimize the function's performance over a
certain range of x values, letting the optimizer choose

the coefficients and a.

Lookup Tables
Lookup tables are essentially arrays that map an index

to a precomputed value. They can be easily linearly
interpolated and are good for cases where power

series approximations cannot be used. The main
limiting factor with lookup tables is that they can eat

up a lot of block RAM.

Conclusion
Sitting at the crossroads of configurability and speed,
FPGAs are uniquely positioned to implement DSP

algorithms. To make full use of their capabilities, it is
critical to know the right tools and techniques. When

developing for FPGAs, thoughtful design is the
difference between what is possible and what is

impossible.

4

References
1. Davis, J. (2021). Techniques for Audio Processing
with Low-Power FPGAs. https://davisynth.com/wp-

content/uploads/2021/11/White_Paper_Davisynth_1
_3.pdf

2. Dawkins, P. (2020). Section 4-16 : Taylor series.
Lamar

University. https://tutorial.math.lamar.edu/Classes/

CalcII/TaylorSeries.aspx

3. Fryad M. Rashid, P.-L. C. (2015). Combinational logic
circuits.

https://people.cs.clemson.edu/∼yfeaste/855Assignments/

presentations/Team6-

Combinational%20Logic%20Circuit.pdf

4. Oppenheim, A., Willsky, A., Nawab, S., Hamid, w.,

Hern ́andez, G., & Young, I. (1997). Signals &
systems. Prentice Hall. https://books.google.com/

books?id=g2750K3PxRYC

5. Patel, M. K. (2017). Fpga Designs with VHDL.

https://vhdlguide.readthedocs.io/en/latest/vhdl/fsm.htm

5

