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Abstract 
This document serves as an overview of the 
considerations that must be taken to implement high-

performance signal processing algorithms on FPGAs. 
 

Introduction 
Signals are everywhere. A signal is any piece of 
information from the sound waves that carry speech 

to the light waves that let us see. For the most part, 
signals are not useful by themselves and need to be 

transformed or processed to do something useful. 
This operation is called signal processing. In the 

example of sound waves, the human brain performs 
signal processing to decode speech sounds into 

words. 
Digital signal processing (DSP) is a subclass of signal 

processing that uses digital systems to do 
mathematical operations on signals. Effective signal 

processing requires powerful digital systems that are 
very good at crunching numbers. For radio signals, 

the most powerful processors make use of FPGAs.  
FPGAs are reconfigurable digital circuits that can 

effectively mimic complex digital behavior. In 
essence, they serve as a way for developers to create 

custom digital circuits without the manufacturing 
overhead or cost of having to fabricate custom 

silicon. FPGAs have close to the same performance 
as custom silicon chips, making them useful for high 

performance applications. 
Digital signal processing is a common use case for 

FPGAs where traditional CPUs used by computers 
can be orders of magnitude too slow. The main 

advantage of FPGAs over CPUs is their ability to 
perform many complex calculations at the same time. 

This is made possible by the FPGA's inherent 
capability to configure its resources to work in 

parallel whereas a CPU at best can only perform a 
single instruction at a time. 

 

Figures of Merit for DSP 
Bandwidth 
Bandwidth is a measure of the rate of data the system 

can intake. In a water pipe, this can be thought of as the 
diameter of the pipe. For a given speed of the water, a 

wider pipe will be able to carry more water overall 
because there is more water contained in each cross-

section. 
When continuous analog signals are converted to a 

digital representation, they are quantized both in time 
and in magnitude. Quantization error in magnitude is 
not an issue that will be discussed in this document as 

it is a function of the quality of the analog-to-digital 
converter hardware which is not part of the digital 

signal processor. Modern analog-to-digital converters 
can have bit depths of over 32bits meaning that such 

error is largely negligible.  
Time quantization on the other hand is critical to the 

system's performance. Signals quantized in time are 
subject to the Nyquist theorem which states that the 

maximum recoverable frequency for a signal quantized 
in time is half the quantization sampling rate 

(Oppenheim). 
Bandwidth is typically expressed in terms of its sample 

rate in samples per second. For a system with a sample 
rate of 1MHz, 1 million samples will pass through the 

input port per second. The output port will also pass 1 
million samples every second.  

It is important to note that system bandwidth gives zero 
information about the time delay between the input and 

output ports. Going back to the pipe analogy, a 100-
mile-long pipe could pass 1 gallon per second all the 

time but it might take over a month for a water 
molecule to travel through the full length of the pipe. 

 
Latency 
Latency is a measure of the time delay between 
unprocessed data into the system and processed data 

out of the system. This is equivalent to the amount of 
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time it takes a water molecule to get through the pipe. 
An extreme example to demonstrate this could be a 

100-mile pipe as thin as a human hair. If this pipe has 
the same rate of water molecules per second as the 

wide pipe, those water molecules would have to 
travel at very high speeds. As a result, it could take 

on the order of minutes rather than days for the water 
to travel those 100 miles.  

Because digital systems tend to be clocked, data 
latency is usually measured in terms of samples. For 

example, a latency of 10ms in a 48kHz system would 
be expressed as 480 samples.  

 

FPGA Hardware 
Logic Cells 
FPGAs are composed of thousands of small logic 
cells that are configured and connected to form the 

behavior of the final circuit. In an FPGA, the design 
is not stored in a cheap memory unit like a CPU 

program and instead is stored in each of the FPGA's 
logic cells. As a result, large "programs" are very 

expensive for FPGAs. FPGA cost increases with 
more logic cells, therefore the appropriately sized 

FPGA must be chosen for the target application 
(Davis). 

 
DSP Blocks 
FPGAs have specialized blocks capable of 
multiplying and accumulating large numbers within 

a single clock cycle. Such circuits would take up an 
unreasonable amount of space if they needed to be 

implemented in logic cells and are thus implemented 
in custom silicon. These blocks are typically 

allocated to tasks automatically by the FPGA's 
development software in order to meet the design 

constraints. As a result, the designer typically does 
not have to worry about interfacing with DSP 

blocks. This makes it easy for a design to be ported 
from one FPGA to another (Davis). 

 
Block RAM 
FPGAs usually have fast dual port memory blocks 
called Embedded Block RAM (EBR) that can be 

written to/read from in a single clock cycle. These 
blocks can be instantiated to store information when 

the FPGA configures itself on startup. This allows 
them to act as both a RAM and a ROM. This 

property is imperative to making fast custom 

algorithms because it allows for the use of lookup 
tables as a replacement for complicated logic. An 

example of a lookup table's use could be to calculate 
ex (Davis). 

 
Clock Rate 
FPGA logic is subject to a maximum clock rate 
beyond which certain hardware such as DSP blocks 

and EBRs will not work. This limits the bandwidth 
and increases the latency of the FPGA for signal 

processing tasks. As a result, the FPGA's maximum 
clock rate needs to be considered when choosing the 

correct FPGA for a given task. 
 

Effective Resource Utilization 
Efficient FPGA development is an art. It is the 
responsibility of the designer to utilize the FPGA's 

hardware to its maximum potential. There are a few 
general strategies for effective resource allocation that 

every designer should be aware of. 
 

State Machines to Emulate CPU Behavior 
An FPGA can be used similarly to a CPU. An 

example of such hardware could be a multiplier that 
calculates the product of two variables, putting the 

product in a third variable. Each state in the state 
machine works similarly to a CPU assembly 

instruction, moving data between the necessary 
variables and moving to the next instruction (Patel). 

The sacrifice in this case is both latency and 
throughput since it trades hardware complexity for 

clock cycles. The latency per sample is determined by 
the number of states in the state machine and the 

throughput is one sample per each run of the state 
machine from beginning to end.  

Unlike a CPU instruction, each state does not have to 
execute a single task. If the same FPGA hardware is 

not being utilized twice in the same instruction, there 
is no issue with performing multiple computation 

steps within a single clock cycle. 
 
Pipelining 
Pipelining is a similar strategy to using state machines 

in that it splits the task into a set of steps, however 
each step has its own dedicated hardware. This has the 

advantage of giving a throughput of one sample per 
clock cycle. 

A good analogy for this is a bucket brigade where 
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firefighters line up in a human chain, passing 
buckets from one person to the next. In this way, 

data (the buckets) move through the chain with a 
throughput of one sample per clock cycle, but the 

latency is determined by the length of the chain. 
 

The disadvantage when compared to state machines 
is that algorithms with many multiplication steps 

will use up the available DSP blocks. The choice to 
pipeline versus using a state machine is one that 

should be made by the designer. 
 

Large Combinational Logic 
Combinational logic occurs when the output of a 

system is determined solely by its current inputs. 
Each step of a state machine or pipeline tends to be 

made of small chunks of combinational logic, but 
those can be combined into a very large chunk of 

logic by feeding each step into the next with no 
latches between (Rashid). Because such algorithms 

have large propagation delays, they tend to span 
multiple clock cycles, though less than the time 

required if the algorithm was implemented using 
either method above.  

Such systems tend to be very resource intensive but 
have the lowest latency. Because they tend to take 

more than one clock cycle to complete, large 
combinational circuits will have worse throughput 

compared to pipelines, but better throughput than 
state machines. For the most part, large 

combinational circuits should be avoided. 
 

Nontrivial Mathematical Functions 
For complicated mathematical functions, there is no 
simple in-built hardware for calculation. In most 

cases, approximations can be used. 
 

Power Series Approximations 
Power series approximations are an important tool to 

create custom nonlinear functions. The most well-
known power series is the Taylor series. It has use 

cases in many applications (Dawkins). 
 

The Taylor series is defined as follows where a is 
the center point: 

 
Note that the only thing actually being calculated is 
(x-a)n. Everything else is precomputed. The error 

between f(x) and the Taylor series decreases as the 
number of terms increases, so some experimentation 

is required to maximize performance. Error also 
increases as x diverges from the center point a.  

Another strategy can be to choose a set number of 
terms and run an optimization function such as least 

squares to optimize the function's performance over a 
certain range of x values, letting the optimizer choose 

the coefficients and a. 
 

Lookup Tables 
Lookup tables are essentially arrays that map an index 

to a precomputed value. They can be easily linearly 
interpolated and are good for cases where power 

series approximations cannot be used. The main 
limiting factor with lookup tables is that they can eat 

up a lot of block RAM. 
 

Conclusion 
Sitting at the crossroads of configurability and speed, 
FPGAs are uniquely positioned to implement DSP 

algorithms. To make full use of their capabilities, it is 
critical to know the right tools and techniques. When 

developing for FPGAs, thoughtful design is the 
difference between what is possible and what is 

impossible. 
 

 
 
 
 
 
 
 
 



 

 
4 

References 
1. Davis, J. (2021). Techniques for Audio Processing 
with Low-Power FPGAs. https://davisynth.com/wp-

content/uploads/2021/11/White_Paper_Davisynth_1 
_3.pdf 

 

2. Dawkins, P. (2020). Section 4-16 : Taylor series. 
Lamar 

University. https://tutorial.math.lamar.edu/Classes/ 

CalcII/TaylorSeries.aspx 

 
3. Fryad M. Rashid, P.-L. C. (2015). Combinational logic 
circuits. 

https://people.cs.clemson.edu/∼yfeaste/855Assignments/

presentations/Team6-

Combinational%20Logic%20Circuit.pdf 

 
4. Oppenheim, A., Willsky, A., Nawab, S., Hamid, w., 

Hern ́andez, G., & Young, I. (1997). Signals & 
systems. Prentice Hall. https://books.google.com/ 

books?id=g2750K3PxRYC 

 
5. Patel, M. K. (2017). Fpga Designs with VHDL. 

https://vhdlguide.readthedocs.io/en/latest/vhdl/fsm.htm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
5 

 


