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Introduction 

 
Neural networks (NNs) have become increasingly 
important in the computing landscape. Neural 

networks are able to infer properties of input data 
with relatively high accuracy, even for 

computationally hard problems. Popular applications 
of NNs are: natural language processing (NLP), 

image recognition, and prediction models such as 
content recommendation. 

 
This tech note is heavily informed by “Efficient 

processing of deep neural networks” [1]. If you 
would like more information on this topic, this source 

will do you well.  

 
Components of a Neural Network 
 

NNs are able to make good inferences on difficult 
problems by leveraging a large number of 

computations and statistical correlations in the 
problem space. In deep neural networks (DNNs) -- 

which represent the lion's share of NN architectures 
today -- this is done through a number of 

independent, interconnected layers. Shallower layers 
extract low-level feature information from the input 

data such as the presence of edges or curves in an 
image. Deeper layers then use this feature 

information to make high level inferences about the 
input, resulting ultimately in a prediction. 

 
The two common types of layers are convolutional 

and fully connected (FC).  
 

Convolutional layers: a set of weight matrices 
making up a filter is passed over the input feature 

map (ifmap). These ifmaps consist of the input data 
or features extracted from previous layers, formatted 

as a 2 or 3 dimensional array, where the dimensions 

are width, height, and # of input channels. Examples 
of channels in an ifmap are red, green, and blue 

subpixel values in an image. The resulting weighted 
sum of the weight matrix and ifmap gives the values 

of the output feature map (ofmap).  
 

Another, perhaps easier to understand usage of 
weight filters is in image processing, as can be read 

about here [2]. 
 

FC layers: each output value is a weighted sum of 
every input value. In our use case, this is performed 

as a very large matrix multiplication. 
 

Sources of Sparsity 
 
Quantization 

 
All types of sparsity, but mostly that of weights, 
benefit greatly from or even necessitate quantization. 

When a neural network is being trained, weights and 
data are typically represented as 32-bit floats. This 

data type has the benefit of being able to represent a 
large range of values (from roughly 10-38 to 1038) 

with fairly high precision. However, floating point 
computation is very energy intensive and slow, and 

many of the benefits of floating point go unused.  
 

 Quantization is the process of taking our trained 
weights and removing unneeded precision from 

them. This can take the form of converting to a less 
precise floating-point type (16 or even 8-bit), or 

convert our weights to an integer datatype. This 
process requires recalibrating our weights to 

maintain most of our inference accuracy, but some of 
this accuracy is likely to be lost. 

 
This process can make it easier to prune a trained 
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neural network (see next section). Moving to a 
smaller data type and/or an integer representation 

also significantly lowers the energy and time 
required to perform mathematical operations, as 

mentioned earlier.  
 

Pruning 
 

DNNs are generally overparameterized at 
construction, as having more parameters than strictly 

needed can facilitate model training. After being 
trained on a dataset, many parameters (weights) in 

the model are close to zero, or otherwise contribute 
little to the end result. These ineffectual weights are 

“removed” (i.e., set to 0) in a process called pruning. 
Unlike with ifmaps and ofmaps, weights are static to 

a trained model, and thus are known before any input 
data is actually processed. This can potentially be 

used to better schedule computations. 
 

Data compression 
 

In addition to weight sparsity, activation (input data) 
sparsity can be created, primarily through the choice 

of particular activation functions. The purpose of 
these functions is to take a weighted sum from a 

neuron's previous layer and produce some nonlinear 
behavior after performing the sum.   The ReLu 

(rectified linear) activation function is the most 
popular choice for creating activation sparsity, as any 

negative values result in a 0, while positive values are 
allowed through. Generally, deeper layers will have 

higher activation sparsity as the network approaches 
a final inference. 

 

Leveraging Sparsity 

 
DNNs generally require a significant amount of 
memory, and have a significant amount of data 

movement. These factors lead to substantial stress 
on DNN memory systems, producing more heat and 

potentially making inferences take longer than they 
would otherwise. Reducing this data movement 

would lower power consumption, improve device 
life, and potentially raise throughput. 

 
Sparsity in weights and activations allows designers 

to leverage compression techniques to reduce stress 
on DNN memory systems. By only storing nonzero 

values (and encoding their locations), the amount of 
data to be transferred or stored decreases 

substantially. However, care must be taken such that 
time spent encoding or decoding these compressed 

representations doesn’t interfere with the operation 
of the DNN accelerator. The ideal compression 

scheme is one which matches the dataflow of your 
accelerator (thus minimizing decoding overhead). 

Some examples of popular compression schemes 
are compressed sparse row (CSR), compressed 

sparse column (CSC), and bitmap.  
 

Another potential way to take advantage of sparsity 
is in skipping computations. By far the most 

common operation in DNNs is multiply-accumulate 
y=y+iw. In accordance with sparsity, one or both of 

the input i or weight w will occasionally be 0. In 
this case, the multiplication can safely be skipped, 

saving energy and potentially time. However, in the 
context of an accelerator, this will often have to be 

done by modifying each processing element (PE) 
which could potentially outweigh the benefits of 

skipping some multiplications, depending on how 
its effect on overall resource consumption or area 

on-chip, and the amount of leverageable sparsity in 
the common case. 

 
Conclusion 
 

Natural or intentionally created sparsity in neural 

networks gives computer scientists and engineers a 
variety of ways to improve throughput and reduce 

power consumption. This reduction in power 
consumption can then be used to improve device 

longevity through lowered thermal stress. However, 
leveraging sparsity can increase our design 

complexity or even hurt performance if poorly 
implemented, or if the specific application doesn’t 

have much sparsity to take advantage of.  
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