

 ECE Senior Capstone Project 2022 Tech Notes

Sparsity in Neural Networks

By Daniel Ernst, ECE ’22

Introduction

Neural networks (NNs) have become increasingly
important in the computing landscape. Neural

networks are able to infer properties of input data
with relatively high accuracy, even for

computationally hard problems. Popular applications
of NNs are: natural language processing (NLP),

image recognition, and prediction models such as
content recommendation.

This tech note is heavily informed by “Efficient

processing of deep neural networks” [1]. If you
would like more information on this topic, this source

will do you well.

Components of a Neural Network

NNs are able to make good inferences on difficult
problems by leveraging a large number of

computations and statistical correlations in the
problem space. In deep neural networks (DNNs) --

which represent the lion's share of NN architectures
today -- this is done through a number of

independent, interconnected layers. Shallower layers
extract low-level feature information from the input

data such as the presence of edges or curves in an
image. Deeper layers then use this feature

information to make high level inferences about the
input, resulting ultimately in a prediction.

The two common types of layers are convolutional

and fully connected (FC).

Convolutional layers: a set of weight matrices
making up a filter is passed over the input feature

map (ifmap). These ifmaps consist of the input data
or features extracted from previous layers, formatted

as a 2 or 3 dimensional array, where the dimensions

are width, height, and # of input channels. Examples
of channels in an ifmap are red, green, and blue

subpixel values in an image. The resulting weighted
sum of the weight matrix and ifmap gives the values

of the output feature map (ofmap).

Another, perhaps easier to understand usage of
weight filters is in image processing, as can be read

about here [2].

FC layers: each output value is a weighted sum of
every input value. In our use case, this is performed

as a very large matrix multiplication.

Sources of Sparsity

Quantization

All types of sparsity, but mostly that of weights,
benefit greatly from or even necessitate quantization.

When a neural network is being trained, weights and
data are typically represented as 32-bit floats. This

data type has the benefit of being able to represent a
large range of values (from roughly 10-38 to 1038)

with fairly high precision. However, floating point
computation is very energy intensive and slow, and

many of the benefits of floating point go unused.

 Quantization is the process of taking our trained
weights and removing unneeded precision from

them. This can take the form of converting to a less
precise floating-point type (16 or even 8-bit), or

convert our weights to an integer datatype. This
process requires recalibrating our weights to

maintain most of our inference accuracy, but some of
this accuracy is likely to be lost.

This process can make it easier to prune a trained

Burnt Sienna

2

neural network (see next section). Moving to a
smaller data type and/or an integer representation

also significantly lowers the energy and time
required to perform mathematical operations, as

mentioned earlier.

Pruning

DNNs are generally overparameterized at
construction, as having more parameters than strictly

needed can facilitate model training. After being
trained on a dataset, many parameters (weights) in

the model are close to zero, or otherwise contribute
little to the end result. These ineffectual weights are

“removed” (i.e., set to 0) in a process called pruning.
Unlike with ifmaps and ofmaps, weights are static to

a trained model, and thus are known before any input
data is actually processed. This can potentially be

used to better schedule computations.

Data compression

In addition to weight sparsity, activation (input data)
sparsity can be created, primarily through the choice

of particular activation functions. The purpose of
these functions is to take a weighted sum from a

neuron's previous layer and produce some nonlinear
behavior after performing the sum. The ReLu

(rectified linear) activation function is the most
popular choice for creating activation sparsity, as any

negative values result in a 0, while positive values are
allowed through. Generally, deeper layers will have

higher activation sparsity as the network approaches
a final inference.

Leveraging Sparsity

DNNs generally require a significant amount of
memory, and have a significant amount of data

movement. These factors lead to substantial stress
on DNN memory systems, producing more heat and

potentially making inferences take longer than they
would otherwise. Reducing this data movement

would lower power consumption, improve device
life, and potentially raise throughput.

Sparsity in weights and activations allows designers

to leverage compression techniques to reduce stress
on DNN memory systems. By only storing nonzero

values (and encoding their locations), the amount of
data to be transferred or stored decreases

substantially. However, care must be taken such that
time spent encoding or decoding these compressed

representations doesn’t interfere with the operation
of the DNN accelerator. The ideal compression

scheme is one which matches the dataflow of your
accelerator (thus minimizing decoding overhead).

Some examples of popular compression schemes
are compressed sparse row (CSR), compressed

sparse column (CSC), and bitmap.

Another potential way to take advantage of sparsity
is in skipping computations. By far the most

common operation in DNNs is multiply-accumulate
y=y+iw. In accordance with sparsity, one or both of

the input i or weight w will occasionally be 0. In
this case, the multiplication can safely be skipped,

saving energy and potentially time. However, in the
context of an accelerator, this will often have to be

done by modifying each processing element (PE)
which could potentially outweigh the benefits of

skipping some multiplications, depending on how
its effect on overall resource consumption or area

on-chip, and the amount of leverageable sparsity in
the common case.

Conclusion

Natural or intentionally created sparsity in neural

networks gives computer scientists and engineers a
variety of ways to improve throughput and reduce

power consumption. This reduction in power
consumption can then be used to improve device

longevity through lowered thermal stress. However,
leveraging sparsity can increase our design

complexity or even hurt performance if poorly
implemented, or if the specific application doesn’t

have much sparsity to take advantage of.

References

1. Sze, V., Chen, Y. H., Yang, T. J., & Emer, J. S.
(2020). Efficient processing of deep neural

networks. Synthesis Lectures on Computer

Architecture, 15(2), 1-341.
2. Wikipedia contributors. (2022, March 14).

Digital image processing. In Wikipedia, The
Free Encyclopedia. Retrieved 22:00, April 8,

3

2022, from
https://en.wikipedia.org/w/index.php?title=Digit

al_image_processing&oldid=1077171134

