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Introduction

Consider a robot navigating a room. If the room is 
mapped out the robot might be able to navigate 
around obstacles and avoid getting stuck, but what if 
the room wasn’t known? A potential solution to this 
problem could be Simultaneous Localization and 
Mapping (SLAM). SLAM is the computational 
problem of navigating and creating a map of an 
unknown environment while navigating the room. 
The unique advantage that SLAM provides is 
location data within the environment that the robot 
is navigating. This article explains the history and 
mathematics of SLAM as well as highlighting a case 
study and the application of SLAM to Team Outer 
Space

Background

History

SLAM was first pioneered in the 1980’s in by R.C. 
Smith and P. Cheeseman (Smith, Cheeseman, et. al. 
1986). At this time SLAM was barely a concept, the 
idea of representing and estimating uncertainty and 
location probabilities in a room. Over the last 40 
years, with the improvement of sensors, faster 

processing, and advancing research, SLAM has 
become one of the lead solutions towards air, space, 
and local navigation of unknown environments.


Mathematical Explanation

SLAM relies on a sensor, typically a camera or 
LiDAR (Light Detection and Ranging hardware) for 
environmental data. The robot begins by taking 
input data of the environment and estimating the 
distance to its surroundings. Input data from a 
camera would be a series of pictures; for a LiDAR it 
would be a series of multiple distance 
measurements. These distances measure how far the 
LiDAR is from a wall, like an invisible tape 
measurer. Based on these distances the bot can 
create a map-like rendering of its current location. 
Depending on the needs of the project and the 
sensors available this process can create either a 2D 
or 3D map of the environment. The next step is for 
the robot to move to a new location close to the 
original location, where the process of taking input 
data and measuring distances is repeated. 
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Now with two different data points, Bayes’ rule is 
applied to update the most probable location of the 
robot in the new position. Bayes rule is a simple 
equation that is used to measure conditional 
probability. Bayes’ rule, which is shown below 
helps determine conditional probability. A sample 
example might be when drawing cards from a deck. 
If event A is drawing a Spade card and event B is 
drawing an Ace the following would be true: When 
one card is drawn, the probability of drawing a 
spade given that the card is an Ace is ¼. This is 
equal to the probability of drawing an Ace given 
that the card is a spade (1/13) times the probability 
of drawing a Spade (¼) divided by the probability 
of drawing an Ace (1/13).


Figure 1. Bayes rule for conditional probability

While the basic premise of Bayes rule is simple, we 
can expand this equation to measure the previously 
mentioned location estimation as shown in Figure 1. 
In this equation ut represents the sensors, ot 
represents the sensor observations, t is the discrete 
time steps, xt is the location of the robot, and mt is 
the environment map.


Figure 2. SLAM location estimation equation using 
Bayes’ rule

While the general concept of SLAM is 
straightforward, there are many issues that begin to 
arise. One critical part of this approximation is the 
accuracy of the measured step. Inaccuracies or drift 
of the robot quickly propagate so a reliable and 
accurate IMU (Inertial Measurement Unit) is 

necessary to measure the robot movement. An IMU 
measures changes in acceleration which can be used 
to determine changes in velocity/position; however, 
this sensor can be very inaccurate especially when 
the bot does not move in a straight line. In addition 
to error with the IMU, if the odometry of the robot 
is inaccurate, the robot position data will introduce 
significant error to the location estimation and 
mapping. Since each new location estimation is 
based on the last one this can become significant 
quickly. An example of this would be if your 
following directions but mess up one of the earlier 
directions. Consider a series of directions where you 
take the Third exit, then take 2 lefts, go straight 
through a stoplight, and then take a right. If instead 
of taking the third exit you take the second exit. You 
can imagine that the final destination might not be 
anywhere near the intended destination. The 
solution to minimize this error is to have the robot 
complete a circular loop, this is known as loop 
closure. Loop closure helps the robot know where it 
is since it already has identical - or near identical 
sensor readings from the location. During this 
process the map is updated along with the position. 
Depending on the accuracy of the software 
packages a loop could be as big as several city 
blocks or as small as a loop around a lamp (Angeli 
et. al., 2009).


Figure 3. Loop closure example. Green represents the 
actual path that the robot takes. Red represents the robot 
thinks it takes (Source: ENSTA)
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Case Study

One specific application of SLAM was a project 
known as ORB-SLAM recently published in 2016 
by Raúl Mur-Artal, Juan D. Tardós, J. M. M. 
Montiel and Dorian Gálvez-López (DBoW2). ORB 
Slam utilizes a singular monocular stereo or RGB-D 
Camera to compute camera trajectory and 
reconstruct a 3D environment in real-time. ORB-
SLAM implements SLAM in the standard approach 
as mentioned earlier with the addition of feature 
tracking. Feature tracking within SLAM is the 
process of finding and tracking specific areas of an 
image such as a specific color, pattern, or shape. 
The addition of feature tracking helps identify 
unique areas of images which improves the 
accuracy of matching these areas between time 
steps. An example of some of these features is 
shown below in Figure 4.


Figure 4. Matching features between two images 
(Source: Qiang Li et. al. 2020)

In a step by step process, an image is captured and 
stored in grayscale. Then the image is parsed and 
key points are identified. This same process is 
repeated for another image. Then the two key points 
between the images are compared and the features 
are matched. The example above shows an example 
where these significant points are shown between 
two photos. Notice that the similar objects aren’t 
necessarily distinct colors since the images are 
grayscale. Next the images are used to reconstruct a 
3-D structure which again relies on the matching 
significant points. The previous steps are repeated 
as more images are taken and the 3-D structure is 
updated with the new points. After a set amount of 
time, distance, or some other benchmark the results 
can be visualized using the images taken, 
constructed graph, or feature points.


Applications towards our specific 
project

The broad goal of the Team Outer Space project is 
to navigate between two points on an asteroid while 
being able to accurately determine the current 
location of the robot during this path. In our original 
approach to solving this problem, we planned to 
rely on visual SLAM to create a local map of our 
environment to determine the current position of the 
robot The specific package we were previously 
looking at to accomplish this goal is the Matlab 
vSLAM package. This package provides functions 
to assist with processes’ such as extracting features, 
matching features, reconstructing a 3-D structure, 
estimating motion from the camera, visualizing 
results, and managing data. Our specific case 
application would have also relied on the IMU to 
determine motion, not just the camera. In addition 
to using SLAM to explore and create a map, we 
previously were going to rely on the map output 
from SLAM to create a path planning algorithm. 
One challenge that SLAM created for our specific 
application is that SLAM is most often used to 
avoid vertical protruding obstacles. Since our 
project goal is modeled towards exploring an 
asteroid we will be faced with craters, potholes, and 
other obstacles that might not be picked up with the 
camera. In order to detect and avoid these craters 
our project has added an additional LiDAR sensor 
to detect craters. Since these features will need to be 
included in the SLAM map we will need to 
incorporate these distances into our SLAM 
algorithm. This process would have looked similar 
to that of loop closure, where the local mapping is 
updated before the general iterative process of 
SLAM continues. In our final product, our team 
chose not to implement SLAM because of time 
constraints and the nature of our problem. We didn’t 
need to create a map of our environment as long as 
the location is known so SLAM was not key to 
solving the issue. Instead of SLAM we are solely 
using the Camera, LiDAR, and IMU to track current 
position and distance traveled. The front  Jack 3
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Final Draft 3/31/22 LiDAR is still being included to 
map negative distances thus solving all of our 
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potential issues with craters. 


Future of SLAM

One of the issues that arises utilizing SLAM for 
asteroid navigation is the limited computational 
power. This causes current active SLAM projects to 
often move extremely slowly. The mars rover for 
example has a maximum speed of less than 0.1 
mph, which the time of slow speed of SLAM 
attributes to (Zhang et. al. 2018). With 
computational power increasing yearly, out-of-core 
parallel SLAM could be possible in the next coming 
years. Out-of-core parallel computation is the 
process of splitting up a workload into multiple 
chunks that can separately be solved. The idea 
behind this would be that the SLAM generated map 
could be split among cores or potentially by solving 
multiple stages of SLAM in parallel entirely 
(Cadena et. al. 2016).
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