

# **Electronic SKIN: Sensory-Kinetic Integrated Network** Pressure, temperature, touch sensing glove

#### Problem

Capturing the human sense of touch with electronics is useful for applications in prosthetics, robotics, and sensory data collection. However, touch is a complicated sense that requires multiple electronic sensors to capture. This project aims to build a glove with an array of different sensors that collect the most useful parts of the sense of touch.

#### Customer

#### Dr. Sameer Sonkusale, Tufts Nano Lab



SKINterface Pressur [emperatur

Team Fuzzy Wuzzy, Tufts ECE Senior Design 202



## **Glove Sensors**

1. Binary touch: A grid of resistive strainsensing thread in a grid on the back of the hand senses when the glove is touching an object. 2. Pressure: Velostat (a flexible pressuresensitive material) senses the pressure applied to an object on the fingertips and palm. 3. Temperature: Flexible B3950 NTC thermistors on the fingertips and palm sense the temperature of an object being touched.

#### Interface

Sensor values are read with a Teensy 3.6 microcontroller and sent over serial to a Python dashboard. The UI shows relative sensor values at each sensing point on the glove.

The final glove has 6 pressure sensors, 6 temperature sensors, and 7 thread touch sensors. It outputs sensor readings as voltages, which the interface reads and displays. The sensors are accurate to relative values and don't output exact values.



## Outcome

# Next Steps

The project could benefit from additional functionality in the future:

- Add more touch sensors for higher resolution (requires more microcontroller pins)
- Switch to a more exact sensing approach
- while remaining physically flexible
- Make sensor reporting wireless
- Refine fabrication techniques