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Introduction 
This paper will explore the canonical Kalman filter 

algorithm and derive the update and state 

space equations using mean squared error. Firstly, 

we begin by providing the necessary mathematical 

details in probability and linear algebra required to 

understand the technical details of the algorithm. 

Then we discuss the algorithm in detail and give 

some motivation for why one should care about it 

(Kalman fltering). Finally, we discuss the algorithm, 

Extended Kalman Filtering, as it used in our senior 

capstone project. We will also discuss some future 

work that could be done with the project.  
Mathematical Pre-requisites 
Mean Squared Error 
When we have a signal from a sensor or any other 

source, we can represent it using the equation (1), 

where 𝑦𝑘 is the observed signal,  𝑥𝑘 is the information 

signal and 𝑛𝑘 is the noise signal. The goal is to 

estimate the information signal. 

 

𝑦𝑘 = 𝑎𝑘𝑥𝑘 + 𝑛𝑘  (1) 

 

To evaluate the performance of our estimate, we 

define the error between the estimated signal and the 

true signal using equation (2). The error function 𝑓𝑒 

measures the difference between the estimated signal 

𝑥̂𝑘 and the true signal 𝑥𝑘. 

 

𝑓𝑒(𝑒𝑘) = 𝑓𝑒(𝑥𝑘 − 𝑥̂𝑘) (2)  
 

If we assume that the error function f is a positive, 

monotonically increasing function, we can use the 

squared error function (3), which squares the 

difference between the estimated signal and the true 

signal. 

𝑓𝑒(𝑒𝑘) = (𝑥𝑘 − 𝑥̂𝑘)2  (3) 

Finally, we can measure the error over time by taking 

the expected value of the error function, which is 

called the loss function L. The loss function L tells us 

on average how far off our estimated signal is from 

the true signal. 

𝐿 = 𝐸(𝑓𝑒(𝑒𝑘))  (4)  

 
Maximum Likelihood 
In order to find the best estimate of the information 

signal from a given signal, we can use a technique 

called maximum likelihood statistics. This means we 

want to find the filter that maximizes the probability 

of getting the given signal. Assuming the noise in 

the signal is distributed in a Gaussian way, we can 

calculate the probability of getting the signal by 

using a normalization constant and an exponential 

formula. The optimal filter is the one that minimizes 

the mean squared error, which means it provides the 

best estimate of the information signal. 

Assuming Gaussian noise:  

𝑃(𝑌𝑘|𝑋̂𝑘) = 𝑘𝑒
−(

(𝑦𝑘−𝑎𝑘𝑋̂)2

2𝜎𝑘
2 )

(6) 

Where K is a normalization constant. The maximum 

likelihood is given by the product over 𝑘.  

 

 

 
 

 

 

Department of Electrical and Computer Engineering 
Senior Project Handbook: http://sites.tufts.edu/eeseniordesignhandbook/ 

Celestial Blue 

 



 

 
2 

Derivation Of the Kalman Filter (KF) 
We won’t give a full derivation via mean squared 

error here but 6th element of the references goes into 

the details. Here is a high level description of the 

algorithm – I will also present some of the results 

here. The Kalman Filter algorithm is used to 

estimate the state of a variable based on 

observations from that variable. The state of the 

variable is modeled as a linear equation with a noise 

component. Observations from the variable are 

made through a second linear equation that also has 

a noise component. The mean squared error (MSE) 

of the estimate can be minimized by modeling the 

noise as a Gaussian distribution. The Kalman Filter 

uses the MSE to provide an optimal filter. The 

Kalman Filter algorithm updates the estimate of the 

state using the Kalman gain and the innovation. The 

error covariance of the estimate is updated using the 

Kalman gain and the prediction covariance. The 

prediction covariance is a function of the 

measurement noise and the state transition matrix. 

The Kalman gain is computed using the prior 

estimate, the prior error covariance, and the 

prediction covariance. The update equation for the 

error covariance is a function of the Kalman gain 

and the prior error covariance. Figure 1. Shows a 

high-level diagram as well.  

 

The Kalman innovation is as follows: 

𝑖𝑘 = 𝑧𝑘 − 𝐻𝑥̂𝑘  (7) 

Where 𝑧𝑘 is true measurement of x at time step k. H 

is the connection between the state vector 𝑥𝑘 and the 

measurement vector.  

 

The Kalman Gain Equation K is as follows: 

 

𝐾𝑘 = 𝑃𝑘
′ 𝐻𝑇(𝐻𝑃𝑘

′ 𝐻𝑇 + 𝑅)−1  (8) 

 

Where P is the covariance matrix.  

  

In the Future we would like to explore a fast Kalman 

filtering algorithm (CKMS recursion) which reduces 

the computational complexity by using different 

state propagation equations. In the next section we  

explore the practical applications of KF via extended 

Kalman filtering (EKF).  

 

 
Figure 2. Kalman Filter Flow (img src: 

https://upload.wikimedia.org/wikipedia/commons/thumb/a/

a5/Basic_concept_of_Kalman_filtering.svg/1200px-

Basic_concept_of_Kalman_filtering.svg.png) 

 
Kalman Filtering for Our Flight 
Computer 
In figure 2 we give code that implements the extended 

Kalman filtering (EKF) algorithm for our project. The 

purpose of the EKF is to estimate the state of the 

system, which includes the position and velocity 

vectors, as well as the orientation of the vehicle in 

space. The EKF takes measurements from the rocket's 

inertial measurement unit (IMU), which consists of 

accelerometers and gyroscopes, as well as from 

external sensors such as GPS and barometers. 

 

The EKF class has two main methods: predict and 

update. The predict method takes in an IMU reading 

and the time step since the last reading, and uses this 

information to predict the new state of the system. The 

update method takes in measurements from the GPS 

and/or barometer and uses them to correct the predicted 

state. 

 

The EKF class is initialized with the initial state vector 

x0 and the initial quaternion q0_e2b, which represents 

the orientation of the rocket. The class also includes 

methods for initializing the EKF matrices and for 

computing the measurement update equations. 
 

""" 

@author: zrummler 

PURPOSE: Implements Extended Kalman Filtering for 

our Flight Computer 

OBJECT: EKF(x, q, P, Q, R, f, F, h, H) 
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METHODS: EKF.predict(), EKF.update(z) 

SEE BELOW FOR MORE DOCUMENTATION   

""" 

import scipy 

import numpy as np 

np.set_printoptions(linewidth=200) 

import strapdown as sd 

import quaternions as qt 

import earth_model as em 

 

class EKF: 

    """ 

    Extended Kalman Filter Implementation 

    How to initialize: 

        - Initialize 9-element state vector, x 

        - Initialize 4-element global quaternion, q_e2b 

        - Create a class with ekf = EKF(x, q_e2b) 

    How to run:    

        while data collection 

            accel, gyro, dt = get next IMU reading 

            ekf.predict(accel, gyro, dt)      

            if gps or barometer ready 

                lla = get next GPS data 

                ekf.update(lla) 

  See predict() and update() for information on 

running the filter 

 """ 

    def __init__(self, x0, q0_e2b): 

        """ 

        Initializes the EKF object 

        Arguments: 

            - x0: (9,1) or (9,) initial state vector [r_ecef, 

v_ecef, roll_error, pitch_error, yaw_error] 

            - q0: initial best estimate of quaternion, 4 x 1, 

        """ 

        self.x = x0.flatten() 

        self.q_e2b = q0_e2b 

        self.P, self.Q = init_ekf_matrices(x0, q0_e2b) 

 

    def predict(self, z_imu, dt): 

        """ 

        EKF state prediction - run this when you have a 

new IMU reading       

        Arguments: 

            - z_imu: (6,1) or (6,) IMU reading [accel_x, 

accel_y, accel_z, gyro_x, gyro_y, gyro_z] 

            - dt: time step since last reading, seconds        

        Returns: 

            - None     

        Notes: 

            - Requires an initialized EKF object 

        """ 

        # predict state estimate 

        self.x, self.q_e2b, phi = f(self.x.flatten(), 

self.q_e2b, z_imu, dt) 

        # predict state covariance 

        self.P = phi @ self.P @ phi.T + self.Q 

    def update(self, z_gps, z_baro=None, 

sigma_gps=15, sigma_baro=0.1): 

        """ 
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        EKF measurement update - run this when you 

have a new GPS or Barometer measurement 

        Arguments: 

            - z_gps: (3,1) or (3,) gps measurement vector 

[lat, long, alt] 

            - z_baro: (3,1) or (3,) barometer measurement 

vector [alt1, alt2, alt3] 

            - sigma_gps: standard deviation of GPS 

readings 

            - sigma_baro: standard deviation of 

barmometer readings 

        Returns: 

            - None 

        Notes: 

            - Requires an initialized EKF object 

       """ 

        # do not update if no new measurement 

        if (z_gps is None) and (z_baro is None): 

            return     

        # update with both if new measurements from 

both 

        elif (z_gps is not None) and (z_baro is not 

None): 

            # compute nu, H, R for both 

            z_gps_ecef = em.lla2ecef(z_gps) 

            nu_gps, H_gps, R_gps = 

get_position_measurement(self.x, z_gps_ecef, 

sigma_gps)  # GPS measurement 

            nu_baro, H_baro, R_baro = 

get_altitude_measurement(self.x, z_baro, 

sigma_baro)    

            # use vstack and blockdiag to combine nu, H, 

and R as needed 

            nu = np.vstack((nu_gps, nu_baro)) 

            H = np.vstack((H_gps, H_baro)) 

            R = scipy.linalg.block_diag(R_gps, R_baro) 

        # update with GPS if new measurement from 

GPS only 

        elif z_gps is not None: 

            # compute nu, H, R for GPS 

            z_gps_ecef = em.lla2ecef(z_gps) 

            nu, H, R = get_position_measurement(self.x, 

z_gps_ecef, sigma_gps)  # GPS measurement       

         

        # update with barometer if new measurement 

from baroemter only 

        elif z_baro is not None: 

            # compute nu, H, R for barometer 

            nu, H, R = get_altitude_measurement(self.x, 

z_baro, sigma_baro) 

            #raise NotImplementedError('Barometer 

measurement not yet implemented') 

 

        # generic EKF update equations 

        S = H @ self.P @ H.T + R  # innovation 

covariance 

        K = self.P @ H.T @ np.linalg.inv(S)  # Kalman gain 

        self.x = self.x.reshape(-1, 1) + K @ nu  # update 

state vector 

        IKH = np.eye(self.x.shape[0]) - K.dot(H)  # 

intermediate variable 

        self.P = IKH.dot(self.P).dot(IKH.T) + 

K.dot(R).dot(K.T)  # update state covariance (9 x 9) 

        self.x = self.x.flatten()  # ensure x is 1D 

 

        # Reset the attitude state.  Move attitude 

correction from x to q 
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        q_error = qt.deltaAngleToDeltaQuat(-self.x[6:9]) 

        self.q_e2b = qt.quatMultiply(q_error, 

self.q_e2b).flatten() 

        self.x[6:9] = 0  # reset attitude error 

 

def f(x, q_e2b, z_imu, dt): 

    """ 

    This function updates the state vector and global 

quaternion via IMU strapdown.  

    It also updates the state transiction matrix (9 x 9) 

    Arguments: 

        - x: (9,1) or (9,) state vector, [pos_x, ... vel_x, ... 

roll_error, ...] 

        - q_eqb: (4,1) or (4,) global quaternion [q_scalar, 

qi, qj, qk] 

 

    Returns: 

        - x_new: updated state vector 

        - q_new: updated global quaternion  

        - phi: (9,9) updated state propagation matrix 

    """ 

    r_ecef, v_ecef = x[0:3], x[3:6]  # extract ECEF states 

for convenience 

    # grab next IMU reading 

    accel, gyro = z_imu[0:3], z_imu[3:6] 

    dV_b_imu = accel * dt 

    dTh_b_imu = gyro * dt 

    # Run the IMU strapdown, get predictions 

including attitude (q_e2b_new) 

    r_ecef_new, v_ecef_new, q_e2b_new = 

sd.strapdown(r_ecef, v_ecef, q_e2b, dV_b_imu, 

dTh_b_imu, dt) 

    # Update state matrix 

    x_new = np.concatenate((r_ecef_new, 

v_ecef_new, np.zeros(r_ecef.shape))) 

    # compute linearized state transition matrix 

    phi = compute_state_transition_matrix(dt, x, 

q_e2b, accel, gyro) 

    return x_new, q_e2b_new, phi 

 

# Credit: Tyler Klein 

def get_altitude_measurement(x, alt_meas: 

np.ndarray, sigma: float = 5.0): 

    """ 

    Gets an altitude measurement and the 

accompanying measurement Jacobian. The altitude 

is expected to be measure in Height Above the 

Ellipsoid (HAE) which 

    may not be the most useful coordinate frame. This 

was not used in the software and thus was never 

modified. 

    Parameters 

    ---------- 

    x : (N,) ndarray 

        state vector 

    alt_meas : (M,) 

        measured altitude in HAE [m] 

    sigma : float 

        measurement standard deviation [m] (Default: 

5) 

    Returns 

    ------- 

    nu : (M,1) 

        measurement innovation vector 
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    H : (M,N) ndarray 

        measurement partial matrix 

    R : (M,M) 

        measurement variance 

    """ 

    lla = em.ecef2lla(x[0:3])  # convert to LLA in [rad, 

rad, m (HAE)] 

    M = alt_meas.shape[0] 

    #print(M) 

    H = np.zeros((M, x.shape[0]))  # measurement 

partial  

    # Populate H matrix 

    #H[:, 0] = np.cos(lla[1]) * np.cos(lla[0]) 

    #H[:, 1] = np.sin(lla[1]) * np.cos(lla[0]) 

    #H[:, 2] = np.sin(lla[0]) 

    # Populate H matrix 

    J = em.lla_jacobian(x[0:3]) 

    H[:, 0:3] = J[2,:] 

    nu = (alt_meas - lla[2]).reshape(M,1) 

    R = sigma ** 2 * np.eye(M) 

    return nu, H, R 

 

 

# Credit: Tyler Klein 

def get_position_measurement(x, z, sigma=15): 

    """ 

    Gets an absolute position measurement in the 

ECEF frame 

    Parameters 

    ---------- 

    x : (N,) or (N,1) ndarray 

        state vector where x[0:3] is the ECEF position in 

[meters] 

    z : (3,) ndarray, 

        measured ECEF position [meters] 

    sigma : float, default=15 

        measurement uncertainty [m] (Default: 15) 

    Returns 

    ------- 

    nu : (3,1) ndarray 

        measurement innovation vector [meters] 

    H : (3,N) ndarray 

        measurement partial matrix 

    R : (3,3) ndarray 

        measurement covariance matrix 

    """ 

    if np.ndim(x) == 2: 

         x = x[:, 0]  # reduce dimension 

        nu = (z - x[:3]).reshape(3, 1)  # measurement 

innovation 

        R = sigma * sigma * np.eye(3)  # measurement 

covariance matrix 

        H = np.zeros((3, x.shape[0])) 

        H[:3, :3] = np.eye(3) 

        return nu, H, R 

 

def compute_state_transition_matrix(dt, x, q, accel, 

gyro): 

    """ 

    This function constructs the 9 x 9 state transition 

matrix 
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    Arguments: 

        dt: timestep [seconds] 

        x: state vector, 9 x 9, [pos_x, pos_y, pos_x, vel_x, 

... ] 

        q: best quaternion estimate, 4 x 1, [qs, qi, qj, qk] 

        accel: IMU acceleration, 3 x 1, [accel_x, accel_y, 

accel_z], m/s^2 

        gyro: IMU angular rotation, 3 x 1, [gyro_x, 

gyro_y, gyro_z], rad/sec 

    Returns: 

        F: a 9 x 9 matrix 

    """ 

    F = np.zeros((9, 9)) 

    # unpack position 

    r_ecef = x[:3] 

    # determine rotation matrix and such 

    T_b2i = np.linalg.inv(qt.quat2dcm(q)) 

    # determine cross of omega     

    omega_cross = skew(em.omega) 

    # Compute each 3 x 3 submatrix ... Credit: Tyler's 

email 

    F[0:3, 3:6] = np.eye(3)  # drdv 

    F[3:6, 0:3] = em.grav_gradient(r_ecef) - 

omega_cross.dot(omega_cross)  # dvdr 

    F[3:6, 3:6] = -2 * omega_cross  # dvdv 

    F[3:6, 6:9] = -T_b2i.dot(skew(accel))  # dvdo 

    F[6:9, 6:9] = -skew(gyro)  # dodo 

    F = np.eye(9) + F * dt 

    return F 

 

 

def skew(M): 

    """ 

    Computes the skew-symmetric matrix of a 3-

element vector 

    Arguments: 

        - M: 3 x 1 vector 

    Returns: 

        - M x: 3 x 3 skew-symmetric matrix 

    """ 

    return np.cross(np.eye(3), M) 

 

def init_ekf_matrices(x, q): 

    """ 

    Initializes the P, Q, R, and F matrices 

    Arguments: 

        - x: state vector, 9 x 9, [pos_x, pos_y, pos_z, 

vel_x, vel_y, vel_z, roll_error, pitch_error, yaw_error] 

        - q: best quaternion estimate, 4 x 1, [qs, qi, qj, 

qk] 

    Returns: 

        - P: 9 x 9 

        - Q: 9 x 9 

    """ 

    # P: predicted covariance matrix, 9 x 9, can be 

random (reflects initial uncertainty) 

    P = np.eye(9) * 0.1  # does not matter what this is 

    # Q: process noise matrix, 9 x 9, I * 0.001 

    Q = np.eye(9) * 0.001 

    return P, Q 

 

 

Figure 2. EKF for flight computer 
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Conclusion 
And we are done with the derivation. In the Future we 

would like to explore a fast Kalman filtering algorithm 

(CKMS recursion) which reduces the computational 

complexity by using different state propagation 

equations. We would also like to explore the practical 

applications of KF via extended Kalman filtering (EKF) 

and unscented Kalman filtering (UKF). 
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