

 ECE Senior Capstone Project 2023 Tech Notes

Flight Computer for Amateur Rocketry
By Ibrahima Barry, ECE ’23

Introduction
This paper will explore the canonical Kalman filter

algorithm and derive the update and state

space equations using mean squared error. Firstly,

we begin by providing the necessary mathematical

details in probability and linear algebra required to

understand the technical details of the algorithm.

Then we discuss the algorithm in detail and give

some motivation for why one should care about it

(Kalman fltering). Finally, we discuss the algorithm,

Extended Kalman Filtering, as it used in our senior

capstone project. We will also discuss some future

work that could be done with the project.
Mathematical Pre-requisites
Mean Squared Error
When we have a signal from a sensor or any other

source, we can represent it using the equation (1),

where 𝑦𝑘 is the observed signal, 𝑥𝑘 is the information

signal and 𝑛𝑘 is the noise signal. The goal is to

estimate the information signal.

𝑦𝑘 = 𝑎𝑘𝑥𝑘 + 𝑛𝑘 (1)

To evaluate the performance of our estimate, we

define the error between the estimated signal and the

true signal using equation (2). The error function 𝑓𝑒

measures the difference between the estimated signal

𝑥̂𝑘 and the true signal 𝑥𝑘.

𝑓𝑒(𝑒𝑘) = 𝑓𝑒(𝑥𝑘 − 𝑥̂𝑘) (2)

If we assume that the error function f is a positive,

monotonically increasing function, we can use the

squared error function (3), which squares the

difference between the estimated signal and the true

signal.

𝑓𝑒(𝑒𝑘) = (𝑥𝑘 − 𝑥̂𝑘)2 (3)

Finally, we can measure the error over time by taking

the expected value of the error function, which is

called the loss function L. The loss function L tells us

on average how far off our estimated signal is from

the true signal.

𝐿 = 𝐸(𝑓𝑒(𝑒𝑘)) (4)

Maximum Likelihood
In order to find the best estimate of the information

signal from a given signal, we can use a technique

called maximum likelihood statistics. This means we

want to find the filter that maximizes the probability

of getting the given signal. Assuming the noise in

the signal is distributed in a Gaussian way, we can

calculate the probability of getting the signal by

using a normalization constant and an exponential

formula. The optimal filter is the one that minimizes

the mean squared error, which means it provides the

best estimate of the information signal.

Assuming Gaussian noise:

𝑃(𝑌𝑘|𝑋̂𝑘) = 𝑘𝑒
−(

(𝑦𝑘−𝑎𝑘𝑋̂)2

2𝜎𝑘
2)

(6)

Where K is a normalization constant. The maximum

likelihood is given by the product over 𝑘.

Department of Electrical and Computer Engineering
Senior Project Handbook: http://sites.tufts.edu/eeseniordesignhandbook/

Celestial Blue

2

Derivation Of the Kalman Filter (KF)
We won’t give a full derivation via mean squared

error here but 6th element of the references goes into

the details. Here is a high level description of the

algorithm – I will also present some of the results

here. The Kalman Filter algorithm is used to

estimate the state of a variable based on

observations from that variable. The state of the

variable is modeled as a linear equation with a noise

component. Observations from the variable are

made through a second linear equation that also has

a noise component. The mean squared error (MSE)

of the estimate can be minimized by modeling the

noise as a Gaussian distribution. The Kalman Filter

uses the MSE to provide an optimal filter. The

Kalman Filter algorithm updates the estimate of the

state using the Kalman gain and the innovation. The

error covariance of the estimate is updated using the

Kalman gain and the prediction covariance. The

prediction covariance is a function of the

measurement noise and the state transition matrix.

The Kalman gain is computed using the prior

estimate, the prior error covariance, and the

prediction covariance. The update equation for the

error covariance is a function of the Kalman gain

and the prior error covariance. Figure 1. Shows a

high-level diagram as well.

The Kalman innovation is as follows:

𝑖𝑘 = 𝑧𝑘 − 𝐻𝑥̂𝑘 (7)

Where 𝑧𝑘 is true measurement of x at time step k. H

is the connection between the state vector 𝑥𝑘 and the

measurement vector.

The Kalman Gain Equation K is as follows:

𝐾𝑘 = 𝑃𝑘
′ 𝐻𝑇(𝐻𝑃𝑘

′ 𝐻𝑇 + 𝑅)−1 (8)

Where P is the covariance matrix.

In the Future we would like to explore a fast Kalman

filtering algorithm (CKMS recursion) which reduces

the computational complexity by using different

state propagation equations. In the next section we

explore the practical applications of KF via extended

Kalman filtering (EKF).

Figure 2. Kalman Filter Flow (img src:

https://upload.wikimedia.org/wikipedia/commons/thumb/a/

a5/Basic_concept_of_Kalman_filtering.svg/1200px-

Basic_concept_of_Kalman_filtering.svg.png)

Kalman Filtering for Our Flight
Computer
In figure 2 we give code that implements the extended

Kalman filtering (EKF) algorithm for our project. The

purpose of the EKF is to estimate the state of the

system, which includes the position and velocity

vectors, as well as the orientation of the vehicle in

space. The EKF takes measurements from the rocket's

inertial measurement unit (IMU), which consists of

accelerometers and gyroscopes, as well as from

external sensors such as GPS and barometers.

The EKF class has two main methods: predict and

update. The predict method takes in an IMU reading

and the time step since the last reading, and uses this

information to predict the new state of the system. The

update method takes in measurements from the GPS

and/or barometer and uses them to correct the predicted

state.

The EKF class is initialized with the initial state vector

x0 and the initial quaternion q0_e2b, which represents

the orientation of the rocket. The class also includes

methods for initializing the EKF matrices and for

computing the measurement update equations.

"""

@author: zrummler

PURPOSE: Implements Extended Kalman Filtering for

our Flight Computer

OBJECT: EKF(x, q, P, Q, R, f, F, h, H)

3

METHODS: EKF.predict(), EKF.update(z)

SEE BELOW FOR MORE DOCUMENTATION

"""

import scipy

import numpy as np

np.set_printoptions(linewidth=200)

import strapdown as sd

import quaternions as qt

import earth_model as em

class EKF:

 """

 Extended Kalman Filter Implementation

 How to initialize:

 - Initialize 9-element state vector, x

 - Initialize 4-element global quaternion, q_e2b

 - Create a class with ekf = EKF(x, q_e2b)

 How to run:

 while data collection

 accel, gyro, dt = get next IMU reading

 ekf.predict(accel, gyro, dt)

 if gps or barometer ready

 lla = get next GPS data

 ekf.update(lla)

 See predict() and update() for information on

running the filter

 """

 def __init__(self, x0, q0_e2b):

 """

 Initializes the EKF object

 Arguments:

 - x0: (9,1) or (9,) initial state vector [r_ecef,

v_ecef, roll_error, pitch_error, yaw_error]

 - q0: initial best estimate of quaternion, 4 x 1,

 """

 self.x = x0.flatten()

 self.q_e2b = q0_e2b

 self.P, self.Q = init_ekf_matrices(x0, q0_e2b)

 def predict(self, z_imu, dt):

 """

 EKF state prediction - run this when you have a

new IMU reading

 Arguments:

 - z_imu: (6,1) or (6,) IMU reading [accel_x,

accel_y, accel_z, gyro_x, gyro_y, gyro_z]

 - dt: time step since last reading, seconds

 Returns:

 - None

 Notes:

 - Requires an initialized EKF object

 """

 # predict state estimate

 self.x, self.q_e2b, phi = f(self.x.flatten(),

self.q_e2b, z_imu, dt)

 # predict state covariance

 self.P = phi @ self.P @ phi.T + self.Q

 def update(self, z_gps, z_baro=None,

sigma_gps=15, sigma_baro=0.1):

 """

4

 EKF measurement update - run this when you

have a new GPS or Barometer measurement

 Arguments:

 - z_gps: (3,1) or (3,) gps measurement vector

[lat, long, alt]

 - z_baro: (3,1) or (3,) barometer measurement

vector [alt1, alt2, alt3]

 - sigma_gps: standard deviation of GPS

readings

 - sigma_baro: standard deviation of

barmometer readings

 Returns:

 - None

 Notes:

 - Requires an initialized EKF object

 """

 # do not update if no new measurement

 if (z_gps is None) and (z_baro is None):

 return

 # update with both if new measurements from

both

 elif (z_gps is not None) and (z_baro is not

None):

 # compute nu, H, R for both

 z_gps_ecef = em.lla2ecef(z_gps)

 nu_gps, H_gps, R_gps =

get_position_measurement(self.x, z_gps_ecef,

sigma_gps) # GPS measurement

 nu_baro, H_baro, R_baro =

get_altitude_measurement(self.x, z_baro,

sigma_baro)

 # use vstack and blockdiag to combine nu, H,

and R as needed

 nu = np.vstack((nu_gps, nu_baro))

 H = np.vstack((H_gps, H_baro))

 R = scipy.linalg.block_diag(R_gps, R_baro)

 # update with GPS if new measurement from

GPS only

 elif z_gps is not None:

 # compute nu, H, R for GPS

 z_gps_ecef = em.lla2ecef(z_gps)

 nu, H, R = get_position_measurement(self.x,

z_gps_ecef, sigma_gps) # GPS measurement

 # update with barometer if new measurement

from baroemter only

 elif z_baro is not None:

 # compute nu, H, R for barometer

 nu, H, R = get_altitude_measurement(self.x,

z_baro, sigma_baro)

 #raise NotImplementedError('Barometer

measurement not yet implemented')

 # generic EKF update equations

 S = H @ self.P @ H.T + R # innovation

covariance

 K = self.P @ H.T @ np.linalg.inv(S) # Kalman gain

 self.x = self.x.reshape(-1, 1) + K @ nu # update

state vector

 IKH = np.eye(self.x.shape[0]) - K.dot(H) #

intermediate variable

 self.P = IKH.dot(self.P).dot(IKH.T) +

K.dot(R).dot(K.T) # update state covariance (9 x 9)

 self.x = self.x.flatten() # ensure x is 1D

 # Reset the attitude state. Move attitude

correction from x to q

5

 q_error = qt.deltaAngleToDeltaQuat(-self.x[6:9])

 self.q_e2b = qt.quatMultiply(q_error,

self.q_e2b).flatten()

 self.x[6:9] = 0 # reset attitude error

def f(x, q_e2b, z_imu, dt):

 """

 This function updates the state vector and global

quaternion via IMU strapdown.

 It also updates the state transiction matrix (9 x 9)

 Arguments:

 - x: (9,1) or (9,) state vector, [pos_x, ... vel_x, ...

roll_error, ...]

 - q_eqb: (4,1) or (4,) global quaternion [q_scalar,

qi, qj, qk]

 Returns:

 - x_new: updated state vector

 - q_new: updated global quaternion

 - phi: (9,9) updated state propagation matrix

 """

 r_ecef, v_ecef = x[0:3], x[3:6] # extract ECEF states

for convenience

 # grab next IMU reading

 accel, gyro = z_imu[0:3], z_imu[3:6]

 dV_b_imu = accel * dt

 dTh_b_imu = gyro * dt

 # Run the IMU strapdown, get predictions

including attitude (q_e2b_new)

 r_ecef_new, v_ecef_new, q_e2b_new =

sd.strapdown(r_ecef, v_ecef, q_e2b, dV_b_imu,

dTh_b_imu, dt)

 # Update state matrix

 x_new = np.concatenate((r_ecef_new,

v_ecef_new, np.zeros(r_ecef.shape)))

 # compute linearized state transition matrix

 phi = compute_state_transition_matrix(dt, x,

q_e2b, accel, gyro)

 return x_new, q_e2b_new, phi

Credit: Tyler Klein

def get_altitude_measurement(x, alt_meas:

np.ndarray, sigma: float = 5.0):

 """

 Gets an altitude measurement and the

accompanying measurement Jacobian. The altitude

is expected to be measure in Height Above the

Ellipsoid (HAE) which

 may not be the most useful coordinate frame. This

was not used in the software and thus was never

modified.

 Parameters

 x : (N,) ndarray

 state vector

 alt_meas : (M,)

 measured altitude in HAE [m]

 sigma : float

 measurement standard deviation [m] (Default:

5)

 Returns

 nu : (M,1)

 measurement innovation vector

6

 H : (M,N) ndarray

 measurement partial matrix

 R : (M,M)

 measurement variance

 """

 lla = em.ecef2lla(x[0:3]) # convert to LLA in [rad,

rad, m (HAE)]

 M = alt_meas.shape[0]

 #print(M)

 H = np.zeros((M, x.shape[0])) # measurement

partial

 # Populate H matrix

 #H[:, 0] = np.cos(lla[1]) * np.cos(lla[0])

 #H[:, 1] = np.sin(lla[1]) * np.cos(lla[0])

 #H[:, 2] = np.sin(lla[0])

 # Populate H matrix

 J = em.lla_jacobian(x[0:3])

 H[:, 0:3] = J[2,:]

 nu = (alt_meas - lla[2]).reshape(M,1)

 R = sigma ** 2 * np.eye(M)

 return nu, H, R

Credit: Tyler Klein

def get_position_measurement(x, z, sigma=15):

 """

 Gets an absolute position measurement in the

ECEF frame

 Parameters

 x : (N,) or (N,1) ndarray

 state vector where x[0:3] is the ECEF position in

[meters]

 z : (3,) ndarray,

 measured ECEF position [meters]

 sigma : float, default=15

 measurement uncertainty [m] (Default: 15)

 Returns

 nu : (3,1) ndarray

 measurement innovation vector [meters]

 H : (3,N) ndarray

 measurement partial matrix

 R : (3,3) ndarray

 measurement covariance matrix

 """

 if np.ndim(x) == 2:

 x = x[:, 0] # reduce dimension

 nu = (z - x[:3]).reshape(3, 1) # measurement

innovation

 R = sigma * sigma * np.eye(3) # measurement

covariance matrix

 H = np.zeros((3, x.shape[0]))

 H[:3, :3] = np.eye(3)

 return nu, H, R

def compute_state_transition_matrix(dt, x, q, accel,

gyro):

 """

 This function constructs the 9 x 9 state transition

matrix

7

 Arguments:

 dt: timestep [seconds]

 x: state vector, 9 x 9, [pos_x, pos_y, pos_x, vel_x,

...]

 q: best quaternion estimate, 4 x 1, [qs, qi, qj, qk]

 accel: IMU acceleration, 3 x 1, [accel_x, accel_y,

accel_z], m/s^2

 gyro: IMU angular rotation, 3 x 1, [gyro_x,

gyro_y, gyro_z], rad/sec

 Returns:

 F: a 9 x 9 matrix

 """

 F = np.zeros((9, 9))

 # unpack position

 r_ecef = x[:3]

 # determine rotation matrix and such

 T_b2i = np.linalg.inv(qt.quat2dcm(q))

 # determine cross of omega

 omega_cross = skew(em.omega)

 # Compute each 3 x 3 submatrix ... Credit: Tyler's

email

 F[0:3, 3:6] = np.eye(3) # drdv

 F[3:6, 0:3] = em.grav_gradient(r_ecef) -

omega_cross.dot(omega_cross) # dvdr

 F[3:6, 3:6] = -2 * omega_cross # dvdv

 F[3:6, 6:9] = -T_b2i.dot(skew(accel)) # dvdo

 F[6:9, 6:9] = -skew(gyro) # dodo

 F = np.eye(9) + F * dt

 return F

def skew(M):

 """

 Computes the skew-symmetric matrix of a 3-

element vector

 Arguments:

 - M: 3 x 1 vector

 Returns:

 - M x: 3 x 3 skew-symmetric matrix

 """

 return np.cross(np.eye(3), M)

def init_ekf_matrices(x, q):

 """

 Initializes the P, Q, R, and F matrices

 Arguments:

 - x: state vector, 9 x 9, [pos_x, pos_y, pos_z,

vel_x, vel_y, vel_z, roll_error, pitch_error, yaw_error]

 - q: best quaternion estimate, 4 x 1, [qs, qi, qj,

qk]

 Returns:

 - P: 9 x 9

 - Q: 9 x 9

 """

 # P: predicted covariance matrix, 9 x 9, can be

random (reflects initial uncertainty)

 P = np.eye(9) * 0.1 # does not matter what this is

 # Q: process noise matrix, 9 x 9, I * 0.001

 Q = np.eye(9) * 0.001

 return P, Q

Figure 2. EKF for flight computer

8

Conclusion
And we are done with the derivation. In the Future we

would like to explore a fast Kalman filtering algorithm

(CKMS recursion) which reduces the computational

complexity by using different state propagation

equations. We would also like to explore the practical

applications of KF via extended Kalman filtering (EKF)

and unscented Kalman filtering (UKF).

References
1. Jiao, Jiantao. “Lecture 24: CKMS Recursion -

University of California, Berkeley.” Lecture 24: CKMS

Recursion, UC Berkeley, 28 Apr. 2020,

https://people.eecs.berkeley.edu/~jiantao/225a2020spring

/scribe/EECS225A_Lecture_24.pdf.

2. Becker, Alex. “Online Kalman Filter Tutorial.”

Kalman Filter Tutorial,

https://www.kalmanfilter.net/default.aspx.

3. Lacey, Tony. “Chapter Utorial: The Kalman Filter -

Massachusetts Institute of Technology.” Tutorial: The

Kalman Filter, MIT,

https://web.mit.edu/kirtley/kirtley/binlustuff/literature/co

ntrol/Kalman%20filter.pdf.

4. “Kalman Filter.” Wikipedia, Wikimedia Foundation,

15 Mar. 2023,

https://en.wikipedia.org/wiki/Kalman_filter.

5. Hendeby , Gustaf. “Optimal Filtering 2004 Lecture 8

— Methods.” Fast Algorithms,

https://people.isy.liu.se/rt/fredrik/edu/optfilt/methods4.pd

f.

6. Barry, Ibrahima. Kalman Filtering Derivation via

Mean Squared Error. Tufts University Senior Design, 15

Jan. 2023.

7. source code:

https://github.com/barrycoder123/flightCPUforAmatRoc

9

