Engineers Develop Early Warning System for Cholera Epidemics

In two recently published papers, School of Engineering researchers have established new techniques for predicting the severity of seasonal cholera epidemics months before they occur and with a greater degree of accuracy than other methods based on remote satellite imaging. Taken together, findings from these two papers may provide the essential lead time to strengthen intervention efforts before the outbreak of cholera in endemic regions.

Cholera, caused by the bacteria Vibrio cholerae, is rare in the United States and other industrialized nations. However, globally, cholera cases have increased steadily since 2005 and the disease still occurs in many places including Africa, Southeast Asia, and Haiti. According to the World Health Organization, there are an estimated 3–5 million cholera cases every year, more than 100,000 cases are fatal. Image credit: CDC.gov

The team, led by Shafiqul Islam, professor of civil and environmental engineering, used satellite data to measure chlorophyll and algae, organic substances, and flora that also support growth of the cholera bacteria. Using satellite images, the researchers created a “satellite water marker” (SWM) index to estimate the presence of organic matter including chlorophyll and plankton based on wavelength measurements.

In a separate paper published online in the journal Environmental Modeling and Software, ahead of the September 1 print edition, Antarpreet Jutla, EG13, Islam, and Ali Akanda, EG13, showed that air temperature in the Himalayan foothills can also be a factor in predicting spring cholera.

“A Water Marker Monitored by Satellites to Predict Seasonal Endemic Cholera,” Antarpreet Jutla, Ali Shafqat Akanda, Anwar Huq, Abu Syed Golam Faruque, Rita Colwell, and Shafiqul Islam, Remote Sensing Letters, published on line before print June 3, 2013, Vol. 4, No. 8, 822–831.http://dx.doi.org/10.1080/2150704X.2013.802097

The research reported in this paper was supported, in part, from National Institutes of Health (NIH) grants 1RCTW008587-01 and 2R01A1039129-11A2.

“A Framework for Predicting Endemic Cholera Using Satellite Derived Environmental Determinants,” Antarpreet S. Jutla, Ali S. Akanda, Shafiqul Islam, Environmental Monitoring and Software, published online before print http://dx.doi.org/10.1016/j.envsoft.2013.05.008

The research reported in this paper was supported through NIH funding under award number 1RCTW008587-01. Dr. Jutla acknowledges the support from Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV.

Leave a Reply

Your email address will not be published. Required fields are marked *