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Abstract 
 

Alarms sounded following the 2007-8 food price increases regarding our ability to 
feed the world in 2050. Some said we need to double food production. Other estimates 
projected a 60% increase in agricultural production to meet rising population and 
changing diets. This paper looks behind those estimates to assess many of the economic 
models that have generated the most widely cited projections. A range of models are 
assessed, a typology of modeling is offered, and the strengths and limitations of different 
estimates are offered. Notable weaknesses include underestimates of the impacts of 
biofuels expansion and the uncertainties related to climate change and its impacts on 
agricultural production. We conclude with a set of recommendations regarding future 
modeling and the need to provide policy-makers with useful scenario analysis to help 
them gauge the impacts of policy alternatives. 
 
Keywords: agriculture, food policy, economic modeling, climate change, biofuels, 
hunger. 
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Can We Feed the World in 2050?  
A scoping paper to assess the evidence 

Timothy A. Wise1 
 
Introduction  
 

“Model outputs should not be misinterpreted as forecasts with well-defined 
confidence intervals. Rather they are meant to provide quantified insights about 
the complex interactions in a highly interdependent system and the potential 
general size order of effects, which cannot be obtained by qualitative and 
theoretical reasoning alone.”2 

 
Malthus was right! At least, that is what one might conclude from the alarms that 

sounded with the doubling of global agricultural commodities prices in 2008. The 
common reference point was 2050, when the global population is expected to surpass 9 
billion. Would the food needs of that population finally outstrip societies’ ability to grow 
it, as Thomas Malthus (1798) warned in his famous 1798 treatise, An essay on the 
principle of population? His predictions, from what amounted to one of the first global 
modeling studies on the world’s ability to feed its growing population, have been widely 
discredited. But resource constraints, exacerbated by uncertainties over climate change, 
have revived questions about the ability of societies and the planet to feed our growing 
population. 
 

The 2008 price spikes were the trigger, and warnings came from far and wide. 
The heads of the UN’s Food and Agriculture Organization (FAO) and World Food 
Program (WFP) called on the world to double food production by 2050 to meet rising 
demand, not just from a growing population but one that is expected to consume more 
meat, and from the rapidly growing demand for bioenergy crops (World Food Program 
2009).  
 

“With almost 80 million more people to feed each year, agriculture can’t keep up 
with the escalating food demand,” warned Frank Rijsberman, head of the Consultative 
Group on International Agricultural Research (CGIAR). “FAO estimates that we have to 
double food production by 2050 to feed the expected 9 billion people, knowing that one 
billion people are already going to bed hungry every day." (Rijsberman 2012) 
 

In fact, the FAO had not called for a doubling of food production by 2050, at least 
its experienced team of agricultural modelers hadn’t. The agency’s models had 

                                                           
1 Timothy A. Wise is Director of the Research and Policy Program at Tufts University’s Global 
Development and Environment Institute. He is grateful to Elise Garvey for invaluable research assistance 
and to unnamed reviewers, whose comments and suggestions vastly improved the content and presentation 
of this paper. This paper was adapted by Action Aid USA for a policy report, “Feeding the World in 2050: 
With the right policies, there’s no reason for panic”: 
http:// www.actionaidusa.org/publications/feeding-world-2050. 
2 Reilly, Michael and Dirk  Willenbockel (2010). "Managing uncertainty: a review of food system scenario 
analysis and modelling." Philosophical Transactions of the Royal Society 365: 3049-3063. Page 2053. 
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suggested, in fact, that we needed to increase agricultural production – not just food 
production – by 70% from 2005/07- 2050 (FAO 2009). A 2012 update of those estimates 
brought the figure down to 60% for the same period (for explanations of the updated 
estimate see (Alexandratos and Bruinsma 2012).  
 

Still, the 100% and 70% figures lived on in public pronouncements on the food 
price crisis. Some came from business interests with much to gain. Monsanto still states 
that we “need to double the amount of food we currently produce.” (Monsanto 2013) 
Respected author Gordon Conway (2012), in his recent book, One Billion Hungry: Can 
We Feed the World?, echoes the widely circulated but poorly sourced need for a 100% 
increase in food production by 2050. Some of the warnings come from well-intentioned 
public officials trying to provoke needed action on agricultural investment and 
development. As late as 2011, UN agencies were warning of needed increases of “70 to 
100 percent” (DESA 2011).  
 

As the FAO’s modelers note, the 70% estimate “seems to have assumed a life of 
its own,” becoming the most widely quoted estimate. At least the FAO’s own officials 
now cite the more updated figure, saying before the 2012 Rio +20 summit, “we need to 
improve people’s access to food in their communities, increase production by 60 per cent 
by 2050, drastically reduce huge losses and waste of food and manage our natural 
resources sustainably, so that it flourishes for future generations" (Nwanze, Graziano da 
Silva et al. 2012). 
 

The purpose of this paper is to examine the basis for the various claims regarding 
future needs from agriculture and assess the implications. Indeed, a small industry has 
sprung up around the question of feeding the world in 2050, and the studies diverge 
widely in their assessments. The estimates matter, precisely because they drive both 
public discourse and public policy. Are we facing a Malthusian future of food scarcity, or 
perhaps a “limits to growth” scenario in which the carrying capacity of the planet reaches 
exhaustion? 
 

Perhaps more important, how well do these estimates of global food demand and 
supply adequately incorporate the uncertainties occasioned by changing economic and 
environmental trends, from climate change to biofuels expansion, from slowing 
agricultural yields to rising meat demand from a growing global middle class? Modeling 
often relies on “business-as-usual” scenarios that treat current practices as inevitable. Yet 
climate change, which is characterized by a daunting array of uncertainties, will generate 
impacts on future agricultural production even if steps are taken now to slow emissions of 
greenhouse gases. 
 

Finally, does the modeling offer useful guidance to policy-makers on the drivers 
of unsustainably high agricultural prices and on the public policies that can address them, 
including the sustainable use of resources?  
 

This review represents more of a user’s guide to this modeling than an assessment 
of modeling itself, or of the range and types of models used in such research (see Reilly 
and Willenbockel 2010 for a good overview, pp 3051-3). We begin by tracing the origins 
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of the main assertions, explaining the reliability and limitations of those efforts. We then 
step back to examine the difficulties inherent in such long-range modeling, then identify 
some useful typologies to integrate a broader range of 2050 projections. In the next 
section, we look at some of the scenario modeling that has been done on key drivers of 
2050 results, specifically agricultural productivity, biofuels expansion, and climate 
change. We then touch briefly on the use of biophysical models to assess future resource 
use, particularly land and water. Next, we examine some of the normative modeling that 
has been developed to address broader scenarios that encompass multi-dimensional 
changes in societal paths. We conclude with some observations on the strengths and 
limitations of the 2050 modeling to date and suggest areas in which it can provide the 
most useful contributions to decision-making. 
 
Background – Review of models and their estimates  
 

The most widely quoted figures come from the FAO’s efforts over time to gauge 
food demands in the future. Their estimates immediately after the 2007-8 food price 
spikes, suggesting the need to double food production from 2005/07- by 2050, served as 
the basis for international alarms about our ability to feed the world. While that figure is 
still cited by policy-makers, the FAO’s later estimate of a 70% increase in agricultural 
production seems to have taken hold as the most commonly cited figure. The FAO’s 
more recent update in June 2012, which lowered the figure to 60%, is recognized as the 
best reliable estimate by the FAO and food policy-makers, though the 70% figure 
remains widely cited in government circles and in the media. 
 

How reliable are these estimates? There are a number of misconceptions about the 
nature of such modeling, and they have implications for any effort to assess not just what 
is likely to happen but also what could happen under different environmental or policy 
scenarios. First, the FAO is very clear in its presentations that it is not answering the 
question, “How can we feed the world in 2050?” It is answering the much more 
straightforward question: Will world production increase enough to meet projected 
demand?  
 

Their answer is yes. And the FAO estimates should indeed offer some reassurance 
– with very important caveats – to those who would sound alarms over our ability to 
produce enough food to feed the population in 2050. Why is this reassuring? 

1. Much of the data has been updated to more recent base years (2005-7) and the 
modelers have incorporated recent and improved estimates of food demands, land 
and water resources, etc. In fact, the shift from 70% to 60% reflects less a change 
in the estimated demand than it does an updated (and higher) figure reflecting 
actual production in the 2005-7 base year period.  

2. It is based on widely accepted – but still uncertain– population growth figures 
(9.15 billion in 20503), well-grounded estimates of economic growth (average 

                                                           
3 Population growth rates are anticipated to vary widely depending on the country. Alexandratos et al 
(2012) notes that the majority of countries whose population growth is expected to be fast in the future are 
those showing inadequate food consumption and high levels of undernourishment, mostly in sub-Saharan 
Africa.  
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global GDP growth of 1.36%/year), and the expected growth in demand (all 
commodities, all uses, 1.1% annual growth), which incorporates the expected shift 
in developing countries to more meat-based diets. 

3. Estimates of agricultural yields are moderate but consistent with historical trends 
(1.1% per year). In other words, the FAO does not meet 2050 demand (which 
includes significant improvements in per capita food consumption) by assuming 
unrealistic productivity improvements. 

4. The estimate does not meet 2050 food demand by assuming an implausible 
conversion of land to agricultural uses, a problem in some biophysical models. 
(The FAO assumes 70 million hectares are converted by 2050, a 9% increase.) 

5. The FAO validates its projections against data for more recent years and against 
the FAO-OECD ten-year projections to 2020 (OECD-FAO 2011).   

 
Thus, the latest FAO estimates present substantial reassurance that with the right 

policies (investment, agricultural research, etc) global agriculture is capable of meeting 
projected demand (food and non-food uses) in 2050. What, then, are the caveats? The 
business-as-usual assumptions inherent in this approach leave two major issues poorly 
addressed. 
 

1. Biofuels expansion – The FAO model is concerned primarily with food supply 
and demand, though the researchers estimate total agricultural supply and demand 
for all uses (food, feed, industrial non-food, seed - including an allowance for 
waste). As such, biofuels scenarios do not get the attention they deserve. To arrive 
at their 60% estimate, the FAO assumes biofuel expansion to meet existing 
mandates through 2020, then no further expansion beyond that. This is both 
unrealistic and, from the perspective of policy-makers, unhelpful. Current 
estimates project first generation biofuel demand in 2030 to be double the FAO’s 
assumed levels (IEA 2012). Policy-makers would be best served by analysis 
showing the impact of different biofuels policies and scenarios. 

2. Climate change – The authors acknowledge, with due apologies, that they were 
not able to incorporate into their modeling the impacts of climate change on 
agricultural production. Given that even with perfect mitigation today we would 
expect to see measurable climate change by 2050, the FAO projections are in 
need of significant adjustment. As the authors acknowledge, “In principle, a 
scenario that assumes no climate change has no place in the array of scenarios to 
be examined.” (p. 93) 

 
Obviously, these are not trivial shortcomings. Both suggest that the FAO 

projections err on the side of overestimating food availability, as both trends suggest 
negative impacts at a global level. 
 

These issues, and a range of others, were addressed at a 2009 expert meeting 
convened by the FAO to assess the implications of the food price crisis for our ability to 
meet future food needs. The meeting brought together researchers from key institutions 
relying on a wide range of models. The resulting papers were later published as a book, 
Looking Ahead in World Food and Agriculture: Perspectives to 2050 (Conforti 2011). 
The volume includes some valuable updates on the 2009 papers and added material and 
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analysis, including a comparison of the main models and an assessment of their 
differences and relative strengths and limitations. As such, it represents one of the more 
comprehensive efforts to gather and assess the results from a range of researchers and 
models. 
 

It is beyond the scope of this paper to summarize the rich results from this 
collective work. Here the goal is to broadly characterize the important modeling 
contributions, note some of their most important results, and identify some of their 
strengths and limitations in relation to the broader goals of projecting future agricultural 
production and consumption and identifying the key trends that are susceptible to policy 
influence. 
 

Alexandratos (2011) provides an excellent comparison of the main modeling 
efforts contained in the FAO volume. They include: 

 FAO’s partial equilibrium model of supply and demand, as outlined above. This 
also includes important FAO modeling on land, water and other resource 
constraints (similar to that in Alexandratos and Bruinsma 2012), based on the 
FAO’s and IIASA’s GAEZ assessment on the availability of land of varying 
suitabilities for crop production.  

 World Bank projections, using its GTAP-based ENVISAGE general equilibrium 
model to examine the implications of economic growth scenarios, agricultural 
productivity growth, poverty, and the potential impacts of climate change and 
energy markets on those results. 

 A more pessimistic assessment of some of these same economic issues, 
particularly as they relate to poverty. 

 IFPRI’s detailed modeling of climate change impacts on agriculture using its 
partial equilibrium IMPACT model. 

 Work by the International Institute for Applied Systems Analysis (IIASA), using 
its general equilibrium model, to carry out detailed modeling of both climate and 
biofuels scenarios. 

 
Alexandratos provides a useful guide to the differences in these models and the 

reasons for their differing results in terms of projections to 2050 as far as such reasons 
could be identified from the contents of the papers and communications with selected 
authors. Concerning price projections of the baseline scenarios, he finds some agreement 
among the models in their projections of supply and demand and world prices. (In most 
economic models, price is the key measure, as it is where the models resolve imbalances 
between supply and demand.) Interestingly, these show greater price moderation than 
most current characterizations of ongoing high food prices. These models generally show 
prices lower than the “post-surge” prices of recent years, generally in line with “pre-
surge” price levels through 2030, then rising by 2050 to about 30% above pre-surge 
prices. Those are still well below current post-surge price levels. 
 

Modeling results to 2050 are, of course, sensitive to economic growth 
assumptions, with faster economic growth increasing demand at a faster rate. The World 
Bank modeling tends to be optimistic in this area, assuming an average growth rate of 
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1.6% for high-income countries and 5.2% for developing countries (van der 
Mensbrugghe, Osorio-Rodarte et al. 2011, p. 206). The model is also more optimistic 
about agricultural productivity growth, assuming 2.1% growth in total factor 
productivity, assumed to come as a result of technological innovation. Neither takes 
account in any detailed way the resource constraints on growth and productivity, though 
the World Bank modelers adjust their overall agricultural productivity growth rate to 
2030 downward from 2.1%/year to 1.76%/year to account for climate change.  
 

Hillebrand (2011) offers a more sober assessment, producing a “market first” 
high-growth scenario, similar to the World Bank assumptions, and a low-growth scenario 
that assumes that developing countries grow at the rates comparable to the pace of the 
previous 25 years. This “trend growth” scenario for developing countries produces 
sobering results, as the slowest growing regions continue to grow slowly (see Table 1 
below, from p. 183). His metric is poverty, and he estimates that with trend growth 
extreme poverty worldwide would be 20% instead of the 2.6% assumed in the “market 
first” scenario. The same scenarios also highlight just how different regional performance 
can be. Under the “trend growth” scenario, Sub-Saharan Africa would have 53% of its 
people in extreme poverty – a higher percentage than in 2005 – instead of 12% under the 
more optimistic scenario; 78% would fall below the $2.50/day poverty line.  
 
Table 1. High and low growth scenarios (from Hillebrand 2011, p. 183) 

 
 

Hillebrand usefully warns of modeling assumptions that solve all resource 
constraints through technical change. As the FAO’s Conforti notes in his introduction to 
the collection of studies, “catching up is not a necessary outcome, especially if 
institutions and investment are not adequate" (Conforti 2011, p. 5). 
 



GDAE Working Paper No. 13-04: “Can We Feed the World in 2050?” 

8 

Indeed, Fischer, Byerlee et al (2012a) warn that there is little evidence that 
genetic engineering will significantly improve yields in the next thirty years, so closing 
yield gaps using existing technologies becomes a high priority. They estimate that we 
need annual average yield growth of 1.25% to meet global food needs in 2050. (Note, 
however, that the latest FAO projections to 2050 estimate that the world average cereals 
yield would need to grow only at 0.7% per year to meet 2050 demand (Alexandratos and 
Bruinsma, 2012, Table 4.13). 
 

Alexandratos notes wide variations in assumptions about consumption levels too. 
Some of this results from reliance on older or unrealistic historical data used in the 
models' base years and some from varying assumptions about economic growth, to which 
all economic models are particularly sensitive. He considers IFPRI’s consumption 
projections too low for those reasons, while he finds IIASA’s too high due to a high 
initial baseline estimate. He recommends the FAO’s estimates as more realistic, since 
they rely on more up-to-date historical data and they have been validated against more 
recent consumption figures and against OECD/FAO projections through 2020. 
 

The other variable that has great influence on modeling outcomes is population 
growth. The greater the population, the greater the demand for agricultural products. 
FAO uses a 2050 estimate of 9.15 billion people, which is based on the middle path 
among three United Nations population scenarios, from the 2008 UN population revision. 
The researchers recognize, though, that uncertainty persists and different trends would 
change the projections significantly. Interestingly, Alexandratos notes that among the 
models the FAO includes in its volume there is wide variation in population assumptions 
and these underlie some of the differences in results. For example, one scenario assumes 
climate change associated with GHG originating from a scenario (the IPCC SRES A2 
scenario) which has a 2050 population of 11.3 billion. He finds different population 
assumptions (implicit or explicit) even within the same model, and he recommends 
greater attention to clear and consistent use of population assumptions. 
 

Tomlinson (2011) offers a useful critique of what she calls the “new 
productivism” driven by economic models that raise alarms about looming shortfalls in 
global production, echoing a Soil Association (2011) critique of the earlier 70%-100% 
figures widely cited. As she points out, “increasing production on such a scale was never 
intended as a normative goal of policy and, secondly, to do so would exacerbate many of 
the existing problems with the current global food system” (p. 1). She warns of prior 
ideological commitments to a particular framing of the food security issue, which defines 
food security as an issue of production rather than access and utilization. She also notes: 

 Most such estimates overstate future food needs because they derive volume 
needs from value calculations. As higher value foods such as meats grow in the 
share of global diets, this can overstate the needed volume increases. It has been 
estimated, for example, that if weight were used instead of value, estimated needs 
would be reduced by 6% (DEFRA 2010). (The latest FAO projections address 
this issue – Alexandratos and Bruinsma, 2012, Boxes 1.1 and 3.1.)  
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 Fruits and vegetables are generally excluded from these projections, mainly 
because they are not treated as commodity crops (Wright 2010). (The latest FAO 
projections do cover fruit and vegetables as separate products.) 

 The measure used in many studies is based on per capita food consumption in 
calories, derived from estimates of availability. Such food availability projections 
allow for broad trend estimates but they neglect demand-side issues such as food 
waste, not to mention unequal access and distribution (Barrett 2010). 

 
Tomlinson recommends looking beyond such economic models to efforts that 

take into account concerns for health, equity, and the environment and that model 
alternatives to what she refers to as “productivism.”  
 
The challenge of long-term economic modeling 
 

The studies and analysis in the FAO’s collection are a good representation of the 
economic modeling that has generated some of the most widely cited estimates of food 
needs in 2050. Alexandratos’s observations highlight the challenges inherent in such 
long-term modeling and the sensitivity of the results to modeling assumptions about 
variables of great uncertainty – economic, environmental, and those related to policy. 
Indeed, often such assumptions are made explicit only in technical annexes to the studies, 
and sometimes not at all. The results, however, are generally presented with a high 
degree of certainty. They are often then repeated as definitive by policy-makers and the 
media in their efforts to simplify complex topics. Such is the case with the studies 
estimating agricultural production and demand to 2050. 
 

Indeed, Reilly and Willenbockel (2010), in an excellent overview of food system 
modeling, warn of this precise problem. “Model outputs should not be misinterpreted as 
forecasts with well-defined confidence intervals. Rather they are meant to provide 
quantified insights about the complex interactions in a highly interdependent system and 
the potential general size order of effects, which cannot be obtained by qualitative and 
theoretical reasoning alone.” (p 2053) 
 

They point out that such modeling requires the mapping of one uncertain system – 
agricultural production and consumption – with another – ecosystems. Both are 
characterized by gaps in data and knowledge, limited confidence in predicting the future 
from the trends of the past, and instability regarding future systems behavior. One set of 
uncertainties compounds the other, leaving, logically, a virtually unlimited range of 
possible outcomes. This is true just considering the “known unknowns,” such as the 
extent to which rising CO2 levels have some positive effects on agricultural production 
(CO2 fertilization) or whether agricultural productivity growth will be high or low by 
historical standards. Add in the “unknown unknowns,” such as extreme but low-
probability climate events, and the forecasting potential for long-range modeling is 
necessarily limited. 
 

A final cautionary warning is echoed by most researchers involved in such 
modeling. Global estimates of our ability to “feed the world” rely mostly on global 
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estimates of supply and demand, yet ecosystems and agricultural production occur at 
local and regional scales. So too does hunger. Thus, global estimates of “our” ability to 
feed “the world” immediately break down4, begging the more important questions of how 
these systems develop across widely differing landscapes, societies, and levels of 
economic development, and how equitably the food is then distributed. In the end, “the 
world” is not fed, in aggregate, and there is no collective “we” doing the feeding. 
 

Still, even if the prevalent misinterpretations of modeling results should be 
discounted, such efforts still have a great deal to offer to those struggling to identify the 
paths forward. At best, they can challenge the “mental maps” of policy-makers by 
drawing out plausible real-world implications of business-as-usual policies or alternative 
approaches. They can also assess the relative importance of different drivers of change. 
 

From the economic modeling world, Thomas Hertel presented a refreshing set of 
observations on the state of current agricultural modeling as part of his presidential 
address to the Agricultural and Applied Economics Association in 2011 (Hertel 2011). In 
a number of ways, his observations echo those of the FAO study cited earlier: 

 Income growth is a key variable and it has proven quite stable over time, though 
we now see faster income growth in (some) developing countries than in wealthy 
countries. That has implications for changing diets and increasing demand, but 
these relationships are relatively well understood and, while subject to change, are 
less difficult to model. 

 Yield growth has slowed, as many have noted, but he sees no cause for alarm. He 
cites cautionary studies, e.g. Fischer, Byerlee,and Edmeades (see updated version 
in Fischer, Byerlee et al. 2012b) who note that the growth of yield potential in two 
dozen “breadbasket” regions of the world has slowed to less than 0.5% annually. 
But he agrees with the FAO that yield growth is basically keeping up with 
slowing long-term growth in demand. 

 Yield potential varies considerably by crop and region, but in general yield gaps 
are low on current irrigated land, which generally operates at 80% of yield 
potential and accounts for 40% of global crop production. There is much greater 
potential for gains on rain-fed land, where yields are often below 50% of potential 
(Lobell, Cassman et al. 2009). He cites studies showing that bringing such lands 
up to their potential, on current cultivated land and using existing technology, 
would generate production increases in 2050 of 60% for wheat, 50% for maize, 
40% for rice, and 20% for soybeans (Monfreda, Ramankutty et al. 2008; Licker, 
Johnston et al. 2010). Most such lands are in less developed regions of developing 
countries, representing both an obstacle (resources) and an opportunity (reducing 
hunger and poverty). 

                                                           
4 The FAO study assigns particular importance to this point: "... examining the issue of food insecurity by 
means of global variables (e.g. can the world produce all the food needed for everyone to be well-fed?) is 
largely devoid of meaning" and "In conclusion, the issue whether food insecurity will be eliminated by the 
end of the century is clouded in uncertainty, no matter that from the standpoint of global production 
potential there should be no insurmountable constraints" (Alexandratos and Bruinsma, 2012, p. 20-21) 
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 Urbanization will have a significant impact on the available supply of land in key 
developing countries such as India and China, but globally it may not present as 
large an impact on available land as some suggest (p. 267). 

 
Hertel provides some useful critiques and suggestions for future modeling. He 

highlights the importance of long-term elasticities of food demand for agricultural land 
use, that is, how rising demand can be expected to translate into land conversion. He 
cautions that many economic models may be overstating the land use implications of 
rising agricultural demand by using elasticities that are too high. Hertel also echoes the 
oft-repeated cautions about modeling the uncertainties associated with bioenergy 
production and climate change. He points out that Searchinger (Searchinger, F. Dong et 
al. 2008) overstated indirect land use change because he failed to fully account for yield 
intensification as demand rises. But he notes that in the long run global oil prices will be 
the main determinant of demand for biofuels. With estimates to 2030 ranging (at his 
writing) between $50 and $200/barrel, the uncertainties are extreme. All the more so with 
climate uncertainties, and he cites studies that show a wide range of estimates (see, for 
example, Hertel, Burke et al. 2010).  
 

A forthcoming special issue of Agricultural Economics makes an important 
contribution to this effort. The issue brings together analysis from the Agriculture 
Modeling Improvement Project (AgMIP), a collaborative effort to improve global 
agricultural modeling particularly as it relates to key uncertainties such as climate change 
and bioenergy production. The issue compares results from ten different models by 
harmonizing some of the key assumptions in the models - population growth, GDP 
growth, agricultural productivity growth, energy prices, base years - then introducing 
alternative socio-economic, climate change, and bioenergy scenarios.5 While the goal is 
to thereby improve modeling by identifying the important differences in the modeling 
assumptions (controlling for those variables), the comparison offers a rich set of results 
across a range of economic models. The authors are clear that the simulations are not 
necessarily grounded in the most realistic scenarios. Still, they permit a number of 
important conclusions, which are summarized in the overview chapter generously made 
available to us for this review (von Lampe, Willenbockel et al. 2013). 

 
Their conclusions and findings include: 

1. The underlying assumptions, which the AgMIP comparison controlled for, 
account for significant differences in modeling results. Controlling for them 
narrowed the range considerably. The baseline scenario, which did not include 
climate change impacts, echoed the FAO's estimates that while agricultural 

                                                           
5 Models participating in this comparison include: Asia-Pacific Integrated Model (AIM) from the Japanese 
National Institute for Environmental Studies; ENVISAGE, based on the World Bank’s LINKAGE model, 
now housed at the FAO; Emissions Prediction and Policy Analysis (EPPA) from MIT; Global Trade and 
Environment Model (GTEM) from the Australian institute ABARES; Future Agricultural Resources Model 
(FARM) from the USDA; Modular Applied GeNeral Equilibrium Tool (MAGNET) from Wageningen 
University; Global Change Assessment Model (GCAM) from the Pacific Northwest National Laboratory; 
Global Biosphere Optimization Model (GLOBIOM) from IIASA; IFPRI’s International Model for Policy 
Analysis of Agricultural Commodities and Trade (IMPACT); Model for Agricultural Production and its 
Impact on the Environment (MAgPIE) from the Potsdam Institute for Climate Impact Research. 
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commodity prices would not likely resume their decline from the 1960s-2005 
(reported as -4%/year in real terms), there was general agreement among the 
models that price increases would be quite limited (estimates ranged from -
0.4%/year to +0.7%/year). This reflects a range of 60%-111% estimates for 
increases in world agricultural production from 2005-2050. 

 
2. All of the controlled variables have great impact on results well out in the future, 

such as in 2050 scenarios. While we know a great deal about them, and the 
historical data is relatively good in most cases, all present important uncertainties 
that cannot be resolved conclusively. A scenario changing the assumptions from 
"middle of the road" to a higher population, lower GDP growth scenario showed 
just how much worse the outcomes could be for production, consumption, and 
prices. If population in developing countries grows 11% more by 2050 and GDP 
growth is more than 30% lower due to slowed annual growth rates over time, per 
capita calorie consumption will be significantly lower - 6-10% globally, and much 
lower than that in poorer regions. 

 
3. In contrast to many earlier estimates, climate change scenarios showed clear 

negative impacts on yields at the global level. The scenarios modeled were 
acknowledged to be "worst case", with high temperature change and no CO2 
fertilization. But models generally showed negative impacts on yield and 
production, with resulting higher prices. Price estimates ranged among the models 
from +2% to +79%. Per capita calorie availability declines across the globe, and 
some of the more extreme estimates suggest they could be as much as 11% lower 
for India compared to the "no climate change" baseline.6 (As some have pointed 
out, this latter finding may not be credible, which underscores the importance of 
the AgMIP modeling improvement effort.).  

 
4. Demands from second generation bioenergy production are projected to have 

relatively modest impacts on food production, consumption, and prices, far lower 
than the impacts of climate change. Agricultural commodity prices are estimated 
to be less than 9% higher with significant second-generation bioenergy 
development. Unfortunately, the scenarios modeled here compared only post-
2030 scenarios on second-generation bioenergy development, leaving an assumed 
and unexplored growth in first generation biofuels through 2030, and then 
continuing at that level to 2050. Thus, the implications of first generation 
expansion go largely unaddressed, though it is worth noting that this baseline 
scenario posits higher biofuel demand than most of the other models that report 
results to 2050. (We return to that when we examine modeling on bioenergy 
production.) 

 
 

                                                           
6 The authors note that the crop models assumed the absence of any fertilization effects of higher 
atmospheric contents of CO2, meaning that the results are based on a “worst-case” pathway from the range 
of possible climate change developments. 
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The authors conclude with the important recommendation that scenario modeling 
is critical for policy and investment decisions, so "it will be necessary to bring decision-
makers and modeling groups closer to improve exchange and dialogue between them."  
 
The broader world of modeling 
 

Reilly and Willenbockel (2010) provide a useful typology of such modeling and a 
detailed analysis of what it offers.7 They distinguish between projections, exploratory 
scenarios, and normative scenarios. Projections include efforts like the FAO’s and most 
of the other studies reviewed thus far. They include baseline modeling, such as the 
FAO’s, as well as what the authors refer to as “what if” scenario modeling in which one 
or two factors are altered to assess the importance of that factor, e.g. the kind of climate 
and biofuels scenarios explored by Fischer.  
 

Exploratory scenarios involve the introduction of a more complex and related set 
of changes. Examples include the incorporation of “external” inputs, such as in Parry, 
Rosenzweig, et al.’s (2004) modeling of IPCC climate scenarios. These also include what 
the authors call “strategic” scenarios, as in the Millennium Ecosystem Assessment 
modeling (Carpenter, Pingali et al. 2005). As the evocative scenario names suggest – 
Global Orchestration, TechnoGarden, Order from Strength, Adapting Mosaic – these 
attempt to model the implications of varying paths for global society. 
 

Normative scenarios take this approach further by starting with the desired paths 
then modeling the implications of each of them for key parameters, from water and land 
use to climate mitigation and food production. The authors distinguish two types of 
normative scenarios. “Preserving” scenarios model efforts to achieve outcomes while 
preserving the essential features of the current system, such as de Fraiture, Wichelns, et 
al.’s (2007) scenario of optimal investment in water resources. “Transformative” 
modeling is similar to the “strategic exploratory” scenarios mentioned above but the 
researchers define a desired future and model what it would take to get there. One of the 
more comprehensive such efforts is the Agrimonde project, which defined a sustainable 
and equitable food system for 2050 and modeled what it would take to achieve those 
goals (Paillard, Dorin et al. 2011; Paillard, Treyer et al. 2011). 
 

Each of these approaches offers valuable insights. The normative modeling may 
be the most provocative because it tends to highlight how far our present path is from 
what is optimal if we want to achieve a particular goal. Similarly, “strategic” modeling 
charts distinct paths, futures, and implications, offering sometimes stark contrasts in 
outcomes from different societal trajectories.  
 

This is invaluable as societies confront complex challenges, such as the carrying 
capacity of the planet. In both cases, however, the complexity of the changes being 
modeled makes it difficult to determine from the results the outcome of any one discreet 
                                                           
7 The authors review a range of global scenario studies including the FAO long-run projections, CAWMA, 
Agrimonde, a study by Parry that uses IPCC socio-economic scenarios, and the Millennium Ecosystem 
Assessment (MA) scenarios. 
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factor, and policy-makers are – for better or for worse – generally trying to address 
factors in isolation. For example, it is impossible to infer from the Agrimonde modeling 
what the optimal biofuels policy (or even goal) should be to achieve a sustainable and 
equitable food system, because the model includes changes to so many other factors. In 
fact, Reilly and Willenbockel cite a small body of literature on the impacts on decision-
making of such modeling, which suggests very limited policy change (see p. 3060).  
 

Reilly and Willenbockel note other relevant typologies, such as Cumming’s 
(2005) for integrated environmental assessments. These include: “Market forces” – 
defined by economic growth being of paramount importance; “Reformed market” – with 
greater government regulation to address externalities; “higher fences” – with rising 
protectionism; “values change” – broad progress toward equity and sustainability; 
“multipolar world” – characterized by a rise in regionalism. They cite the predominance 
of “market forces”-type assumptions in economic models, which may limit the value of 
such research for policy-making. Van Vuuren comes to similar conclusions, synthesizing 
a set of archetypal scenarios that share common features, and often results (van Vuuren, 
Riahi et al. 2012). Thompson and Scoones’ (2009) offer a more detailed critique of the 
direction of social science research on food systems. These authors call for more multi-
disciplinary approaches that look beyond economic growth and focus on sustainability 
and participatory research.  
 

Van Dijk (2012) provides a valuable assessment of food systems modeling with a 
focus on food security outcomes. He concurs that climate change and biofuels are poorly 
incorporated into long-term assessments. And he points out that most modeling focuses 
on the production side with inadequate attention to consumption. "These indicators only 
partially cover the dimensions of food security and predominantly focus on food 
availability and accessibility, while utilisation is hardly addressed (apart from the very 
basic indicator of child malnutrition) and stability is completely omitted.” (p. 20) He 
refers to promising new efforts (Food Secure Project) to incorporate detailed household 
survey data on consumption into such analyses. 
 

Modeling that begins with a more narrowly defined question, and therefore a 
narrower range of parameter changes, can be more useful to policy-makers (e.g., optimal 
investment in water resources). For policy-making, it may well be that “what if” scenario 
modeling is the most useful. If the baseline established by the model is transparent and 
realistic and considers the uncertainties inherent in such long-range efforts, the 
introduction of a limited set of plausible policy or parameter changes can identify a range 
of possible impacts. These, in turn, can inform policy-makers as they consider discreet 
alternatives. We return to this below when we explore the policy-relevant modeling 
related to feeding the world in 2050. 

  
Scenario modeling of key drivers of change 
 

If one goal of scenario modeling is to inform policy-makers about the 
consequences of their policy decisions, the question of feeding the world in 2050 raises 
several key policy questions. All of the variables that drive 2050 modeling results have 
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policy implications, but some are more directly subject to policy changes. As we have 
seen, the level of GDP growth has a significant impact on the 2050 outcomes, yet the 
policy levers to achieve faster or slower growth are multiple and complex. Similarly, 
population growth drives 2050 projections, and while we know that many factors – 
economic development, women’s education and empowerment, etc. – lower birth rates, 
these strategies and their paths are relatively well-researched. 
 

Here we focus on the 2050 modeling to assess the extent to which other policy-
related drivers have been well-modeled to allow policy-makers to better assess their 
decisions. In particular, we examine scenario modeling on: 

 Agricultural productivity growth, which is closely related to investments in 
research and development, extension, irrigation, and other areas germane to 
public policy; 

 Biofuels expansion, which is a key variable, both in terms of the extent of first 
generation biofuel production and in terms of the transition to more sustainable 
second generation technologies. 

 Climate change, which presents modelers with a daunting range of uncertainties 
in projecting agricultural production to 2050 and beyond. 

 
Agricultural productivity 
 

As we have seen, modeling of agricultural production to 2050 is extremely 
sensitive to assumptions about agricultural productivity growth. Over a 40-year time 
horizon (2010-2050) each 0.1% change in the assumed rate produces a 4% change in 
total output. If uncertainty were assumed to be within a range of plus-or-minus 0.25%, 
the resulting production levels come with a range of plus-or-minus 11%. Higher 
assumptions (e.g., van der Mensbrugghe, Osorio-Rodarte et al. 2011) therefore assume a 
great deal more available food in 2050. More pessimistic assumptions (e.g., Hillebrand 
2011) can generate panic about food availability into the future. Many uncertainties 
plague attempts to estimate agricultural productivity growth: climate change, levels of 
agricultural investment, effectiveness of agricultural investment, etc. Still, historical 
trends offer some reliable baselines for assessing future growth, and public policies can 
increase growth. 
 

Most scenario modeling on agricultural productivity creates simulations to 
illustrate the importance of agricultural productivity growth without basing those 
scenarios on documented impacts of public policies (or other changes). These are 
instructive because they highlight the importance of, for example, investment in 
agriculture. But their results are less relevant to assessing policy impacts, nor do they 
offer reliable forecasts of alternative paths. 
 

Willenbockel (2011), for example, develops an interesting baseline scenario to 
2030, then imposes a scenario in which productivity growth is 50% higher for all crops in 
all regions. Not surprisingly, projected price increases moderate significantly with such a 
jump in agricultural productivity. This supports the argument for greater investment in 
agriculture, even though the assumption of 50% higher productivity growth is not based 
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on a careful assessment of either the impacts of agricultural investment on productivity 
nor the regional and crop variations in responses to such investment. Still, such a “what 
if” scenario is useful in calling attention to the importance of the issue.  
 

World Bank modelers did similar “what if” simulations off their baseline 
scenario, which began with the optimistic assumption of global annual agricultural 
productivity growth of 2.1% (van der Mensbrugghe, Osorio-Rodarte et al. 2011). Their 
model produced the outcome of broad supply and demand balance with slight declines in 
prices as the indicator. In one scenario, they cut agricultural productivity in the 
developing world by half, with the result that global agricultural prices would rise 16% 
by 2030. They then ran a scenario in which global productivity is cut by half, and the 
result was a 35% price increase to 2030, not surprising since a one percentage point drop 
in productivity over forty years cuts global production by 34%. (Interestingly, this latter 
scenario, with global productivity growth of 1.05%, is more in line with the baseline 
assumptions in many of the other models.) Again, this type of modeling highlights the 
importance of agricultural productivity to meeting global food needs, even if it does not 
necessarily base those scenarios on specific policy actions or external modeled 
trajectories for agricultural productivity. 
 

IFPRI used its IMPACT model to simulate various scenarios, including one of 
higher agricultural productivity growth resulting from a range of investments (Nelson, 
Rosegrant et al. 2010). Higher productivity (global averages were not clearly specified) 
reduced projected 2050 price increases for the three main grains from a range of 54%-
101% to 20%-60%. As the authors point out, this would have significant impacts on child 
malnourishment, one of their key metrics. So too would increases in productivity growth 
for key staple crops of maize, wheat, and cassava, and increases in irrigation efficiency, 
all of which were separately modeled. A more recent IFPRI scenario assumed 
productivity increases that would reverse expected price increases, yielding an estimated 
8% reduction in the number of malnourished children in 2050 compared to the business-
as-usual scenario, and a 24% reduction in the population at risk of hunger (Rosegrant, 
Tokgoz et al. 2013, p. 95).8 Again, these are useful less as forecasts than to highlight the 
potential impacts of agricultural investments. 
 

The multiagency IAASTD project did only limited modeling for its 
comprehensive report calling for a dramatic shift to more sustainable practices (IAASTD 
2009). But researchers used the IMPACT model to gauge low and high agricultural 
investment pathways to 2050. Their reference case productivity assumption of 
1.02%/year resulted in crop price increases 22%-42% for the three main staple grains. 
The low investment scenario, with annual productivity growth cut to 0.41%, left 
astronomical supply shortages, with projected price increases of 303%-1,292%. The high 
productivity scenario, with 1.63% annual productivity growth, projected significant crop 
surpluses, with modeling projections of price decreases from 48%-73%. These unrealistic 
high and low price projections serve less as forecasts and more as demonstrations of the 
importance of agricultural productivity, and the necessary agricultural investment 
IAASTD was advocating. 
                                                           
8 The same study modeled scenarios of higher energy prices and lower meat demand. 
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Later we review some modeling on climate change, which is relevant to this 
discussion since one of the primary uncertainties is the climate impact on yields. 
 
Biofuels expansion 
 

It is somewhat surprising that there has not been more careful modeling of the 
impacts of biofuels expansion on 2050 food production. There is widespread agreement 
that it is an important variable. Unlike the case of climate change, the uncertainties in 
modeling biofuel demands on agricultural resources are relatively well known. They 
relate less to uncertainties about biophysical inputs or responses to changing conditions. 
The impacts in the case of first generation biofuels are direct, in terms of crop diversion 
and land use. Policies such as consumption mandates are clear and in place. And the 
trajectory, at least over the period of those mandates (10-12 years), is well specified. 
Variables include: changes to those policies, energy prices, and the timing, scale, and 
impact of the emergence of second generation biofuels.  
 

One reason many of the 2050 models take inadequate account of biofuel 
expansion is the difficulty of incorporating such a recent phenomenon into scenario 
modeling that necessarily relies on somewhat dated base years. Many 2050 models have 
a base year of 2000, years before the biofuel boom. Even the relatively updated models, 
with 2005 base years, do not capture much of the recent surge in biofuel production. To 
the extent such models fail to account for biofuel expansion in their scenario exercises, 
their results will be of limited use. In any case, their results will be driven to a significant 
extent by the assumptions they make about biofuel expansion. For example, the FAO in 
its 2012 update incorporated more up-to-date estimates, but they assume the expansion to 
2019, based on OECD/FAO projections, then no further expansion to 2050. They 
acknowledge that this likely underestimates biofuel demand, which they correctly note 
will be driven significantly by oil prices. 
 

The detailed effort by Fischer (2011) presents an example of the kind of “what if” 
scenario modeling that policy-makers need to evaluate key issues such as biofuel 
expansion, though it is now quite out of date. Using a modeling framework based on the 
FAO/IIASA Agro-Ecological Zone (AEZ) model and the IIASA World Food System 
model, Fischer models a series of biofuels expansion scenarios in addition to several 
climate change scenarios. The results may appear dated, relying on base year data from 
2000 and incorporating additional data only up to 2008, but the results are indicative of 
the consequences of policy and pathway choices. Here we summarize the key scenarios 
and results.  
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Table 2. Modeling Biofuel Scenarios 

 
 

The results are instructive (see Table 2). To tell the story in a narrative form, 
compared to the very conservative and outdated baseline, the WEO-V1 scenario, which 
uses 2008 International Energy Agency projections for demand, shows that even 
moderate additional biofuel demand over 2008 levels raises prices 7%, increases those at 
risk of hunger by 21 million people, and requires a 21% increase in cultivated land, even 
with early and gradual deployment of second generation biofuels. If advanced biofuels 
are not available until 2030 (WEO-V2), prices increase 11%, hunger risks rise to 42 
million, and there is a 29% increase in cultivated land. In other words, delays in the 
deployment of advanced biofuels have serious implications.  
 

TAR-V1 uses more realistic estimates of demand, based on known mandates and 
targets. This raises projected biofuel demand by 100%, with dramatic results – 20% price 
increase, 136 million at risk of hunger, 48% increase in cultivated land. Only the rapid 
deployment of advanced biofuels (TAR-V3) mitigates these impacts, with only 9% price 
impacts, 74 million more people at risk of hunger, and still a 29% increase in cultivated 
land.  
 

The four sensitivity analyses (SNS V1-V4) show the increasing impact on 
agricultural prices of different expansion scenarios for first generation biofuels, from 4% 
in the low case to 35% in the high case. Note that based on current estimates, the medium 
scenario (SNS-V2) may well be the closest to our current path. 
 

This modeling is not perfect, of course. The base year is outdated, so it makes 
sense to use the results to gauge the price impacts of the different scenarios in relation to 

Scenario Name Description

Change in 

2050 Price 

Index (%)

Added People 

at Risk of 

Hunger in 2030

Land Use 

Change 

2050(%)²

FAO-REF-01 Freezes expansion at 2008 levels¹

WEO-V1 IEA 2008 projections; 2nd generation 

from 2015

7 21 million 21

WEO-V2 WEO-V1, no 2nd gen. until 2030: all 

demand to 2030 from 1st gen.

11 42 million 29

TAR-V1 WEO-V1, but mandates fulfilled by 2020: 

doubles demand for 1st gen.

20 136 million 48

TAR-V3  TAR-V1, but quick 2nd gen: 33%  global 

demand in 2020, 50% in 2030

9 74 million 29

SNS-V1 Scenarios based on share 1st gen. in 

transport fuels 2020, 2030, 2050: Low - 

2%, 2.5% and 3% 4 - -

SNS-V2 Medium: 4%, 5%, and 6%. 13 - -

SNS-V3 High: 6%, 7.5%, and 9% 23 - -

SNS-V4 Very high: 8%, 10%, and 12% 35 - -

¹Ref scenario: Price Index (1990 = 100): 115; Risk of hunger: 458 million; Cultivated land: 1.7 billion ha

²Relative to reference scenario of no agricultural crops used for biofuel production

Source: Fischer (2011)

Modeling Biofuel Scenarios
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one another, not so much in relation to the base year. In addition, Alexandratos (2011) 
points out that the model overestimates consumption levels overall, which raises demand 
in relation to supply. And he suggests that land is modeled inadequately, with additional 
demand translating too readily into additional cultivated land and with little accounting 
for the land needs of second generation biofuels. He also suggests that the model does not 
adequately account for supply responses by farmers to higher agricultural prices, nor the 
impact of oil prices on biofuel demand. Notably, only rain-fed land is included in this 
modeling run. 
 

Still, it is easy to see why this sort of “what if” scenario modeling can offer 
policy-makers a relatively clear picture of the consequences of their policies. If we want 
to feed the world affordably by 2050 we need to speed up the development and 
deployment of advanced biofuels and/or slow demand for first generation biofuels by 
reducing mandates. Otherwise we are putting undue pressure on poor consumers (via 
price hikes) and on the environment (via land and other resource demands). 
 

Again, it is surprising that more up-to-date modeling has not been carried out on 
an issue as important as biofuels. The table below shows just how outdated most 
modeling assumptions are in comparison to the World Energy Outlook’s 2012 
projections for first generation biofuels use. The FAO uses FAO-OECD projections to 
2020, which are consistent with WEO estimates, but then holds them constant through 
2050. This leaves the 2030 assumption at less than half of projected use. The IMPACT 
model reviewed earlier uses old base year assumptions and minimal growth. The World 
Bank projections do not explicitly account for growing biofuel use. The more current 
AgMIP project assumes trend growth through 2030, which results in estimates 
comparable to WEO’s. 

 
Table 3. Wide variation in estimates of biofuels expansion  

 
 

Model Scenario 2010 2020 2035 2050

WEO 20121 Current Projections 148 239 421 na

2008 2020 2030 2050

FAO Alexandratos (2012) 65 (2005) 182 182 182

IMPACT2 Msangi (2011) Baseline 20 75 110 110

World Bank3 van der Mensbrugghe (2011) n/a n/a n/a n/a

AgMIP4 baseline, 1st generation 148 273 397 397

IIASA FAO-REF-01 (2008 levels) 83 83 83 83

WEO-V1 83 181 206 246

WEO-V2 83 192 258 376

TAR-V1 83 327 437 446

TAR-V3 83 238 272 262

1 2010 actuals from FAO-OECD (2012); WEO 2012 projected growth rate to 2020, 2035

2  Drawn from Alexandratos (2011), pg. 48

3  Numbers not currently available; Author assumes fulfillment of mandates as of 2009

4  2010 actuals from FAO-OECD (2012); AgMIP growth rate for other years (Lotze-Campen 2013)

Reviewed Models

 (millions tons)

Projected Cereal Use for 1st Generation Biofuels
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As Table 3 shows, of the IIASA scenarios modeled by Fischer, his worst-case 
scenario (TAR-V1) seems the closest to business-as-usual projections, at least for 2030. 
That model assumes the fulfillment of mandates and the slow deployment of advanced 
biofuels. But that modeling needs to be improved to be useful. Updating Fischer’s base 
year and modeling parameters, addressing the shortcomings noted by Alexandratos, and 
shifting scenarios somewhat to reflect current policy considerations would yield a useful 
set of results to allow policy-makers to better manage biofuel expansion so that it does 
not impede our ability to feed the world in the future. 
 

As part of the AgMIP project mentioned earlier, Lotze-Campen, von Lampe et al. 
(2013) carried out a comparison of five models in which basic parameters are controlled, 
first generation biofuels are assumed to expand at their current rate through 2030 then 
hold constant, but two scenarios are modeled, one with low second generation 
deployment after 2030 and one with high deployment. The authors estimate modest price 
impacts (9%) of advanced biofuels on agricultural prices suggesting that the additional 
pressure on prices from advanced biofuels will be significant but lower than for first 
generation biofuels. If advanced biofuels replace first generation biofuels (not assumed in 
this modeling), the impacts on prices and resource use would be much lower.  
 
Climate Change 
 

Climate change is one of the most difficult variables to model. The difficulties 
stem from the layered uncertainties associated with climate change and its impacts on 
agriculture. First, there is uncertainty about the extent and timing of climate change likely 
to result from current levels of emissions. Second, projections to 2050 and beyond must 
account for uncertainties related to the extent and pace of mitigation going forward, 
including whether global policy changes will reduce emissions and future impacts. Third, 
the impact of such temperature changes on the earth’s ecosystems is only imperfectly 
understood. Fourth, there is great uncertainty about the impacts of such changes on 
agricultural production. Fifth, it is difficult to predict with any certainty what adaptation 
measures will be taken and how effective they will be. Finally, impacts are expected to be 
worse over time, making the 2050 time horizon too short to adequately gauge climate 
risks. 
 

Wright (2010) provides an extensive review of the literature on climate mitigation 
and the potential impacts on our ability to feed the world in 2050. She finds few studies 
that address the intersection of these two questions, but a good deal on each individually. 
Here we simply highlight some of the scenario modeling that illustrates the state of the 
art while also demonstrating the profound difficulties of dealing with so many 
uncertainties. 
 

As with scenario modeling for other key variables, some research is intended less 
to forecast possible outcomes than to demonstrate the importance of the issue through 
quantitative methods. Willenbockel (2011) relies on an impressive range of external 
estimates of the productivity impacts of climate change to 2030, by region and crop (see 
p. 26 for estimates and sources). The assumptions are pessimistic, based on relatively 
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high temperature changes and sensitivity of crops to warming, and relatively low CO2 
fertilization effects. Compared to his reference scenario, price increases are significantly 
higher in 2030 for the main grains (about 140% compared to about 90%), highest for 
maize. And the impacts are especially severe in Sub-Saharan Africa.  
 

Interestingly, Willenbockel adds a scenario of successful climate change 
adaptation in Sub-Saharan Africa. He assumes that adaptation measures restore 
agricultural productivity levels in this region to those in his non-climate-change reference 
scenario. Price increases are significantly moderated, even with the assumed failure of 
mitigation or adaptation efforts in other parts of the world. He concludes from this that 
investment in regional climate adaptation would have significant benefits to agricultural 
production and food security (Willenbockel 2011, p. 35). 
 

Fischer incorporates into the IIASA World Food Systems model two different 
General Circulation Models (HadCM3 and CSIRO) for  climate projections for IPCC A2 
emission pathways, running scenarios with and without CO2 fertilization. He runs the 
scenarios out to 2080, which is useful given the expectation of rising impacts over time. 
His model only includes rain-fed lands, which is a limitation. He draws three conclusions 
from his scenario runs (p. 111): 

1. The regional impact of climate change is significant, posing threats to future 
food production. 

2. There could be some improvements in rain-fed production if there is a 
positive CO2 fertilization effect and if farmers are able to adapt to changing 
climates. 

3. The post-2050 scenario is particularly worrisome, as modeling shows 
increasingly negative and rapid impacts on production in most regions.   

 
Fischer combines biofuel and climate change impacts for the different scenarios 

outlined earlier in the section on biofuels. If his pessimistic scenario (TAR-V1) is indeed 
the closest to the path we’re now following, and if there is limited CO2 fertilization to 
moderate some climate change impacts, the prospects are dire. It shows cereals price 
impacts growing from 49% in 2020, to 53% in 2050 and up to 87% in 2080, though it is 
worth noting that his baseline for these changes assumes current climate conditions and 
no biofuel expansion.  
 

Nelson, Rosegrant et al (2010) run a series of climate scenarios using IFPRI’s 
IMPACT model. As with Fischer, the baseline is perfect mitigation, i.e., no change in the 
climate from 2010 forward. The simulations allow researchers to estimate the economic 
and social impacts of four climate scenarios of increasing intensity, defined as 
increasingly hotter and increasingly wetter. Using their “middle-of-the-road” assumptions 
of GDP and population growth from 2010 to 2050, they find that for the three main staple 
grains prices would rise between 20% and 32% more, averaging the four climate change 
scenarios, than they would in the baseline case of no climate change. As one would 
expect, the most intense climate scenario results in price increases 25-30% higher than 
that. Using their “middle of the road” assumptions, the researchers go on to estimate that 
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compared to perfect mitigation the changing climate scenarios increase the number of 
malnourished children in 2050 by 8.5%-10.3%. 
 

The authors make an interesting additional contribution, simulating an extended 
drought in South Asia (2030-35), which is one common climate forecast. This allows 
simulation of one aspect of climate change that is difficult for long-run modeling to 
predict – rising temperature variability and extreme weather events. The results show 
sharp price increases for all three of the major grains during the drought years, with a 
dramatic increase in the number of malnourished children.  
 

Fuss, Havlik et al (2011) use the Global Biosphere Management Model 
(GLOBIOM) to assess the impacts on food security of yield uncertainty from climate 
change. If meeting minimum food needs is defined as a constraint of the model, and if 
yields are difficult to predict given the levels of uncertainty, what levels of production are 
required to ensure food security? They conclude that high levels of uncertainty about 
yields increase the need for decision-makers to plan levels of overproduction. They find 
this is feasible but potentially costly. They find that the key to success is the reduction of 
trade barriers to allow agricultural products to flow from surplus to deficit regions, and 
they find the most useful adaptation is the expansion of irrigation, which can help 
stabilize yields and expand production. They acknowledge that water use under climate 
change is inadequately accounted for in their model, so that adaptation strategy itself 
comes with significant uncertainties. Finally, they note the value of increasing global 
storage capacity for basic grains, as this reduces vulnerability to the kinds of short-term 
yield variations expected with climate change. This is one of the few mentions we found 
in the literature of the potential importance of food reserves in contributing to global food 
security in 2050 scenarios. 
 

The Agricultural Modeling Improvement Project (AgMIP) is directly confronting 
the wide variability in climate-related simulations. As noted earlier, this involves 
comparing models by introducing common parameters and assumptions and imposing 
common scenarios. The differences allow cooperating modelers to identify the sources of 
outlying results, distinguish the effects of starting parameters versus modeling 
architecture, and improve efforts to model the many uncertainties associated with climate 
change impacts on agriculture.  
 

The results across models are negative, a noteworthy change from previous rosier 
estimates of climate impacts on agriculture. While the AgMIP scenarios may be 
pessimistic in that they assume no CO2 fertilization, it remains striking that across a 
variety of GCM and crop models climate change lowers agricultural output. Differences 
among crop models are greater than differences caused by climate models, and this has a 
great deal to do with widely varying starting assumptions about demand, area, and yield 
growth. In their forthcoming article on the AgMIP climate modeling, Nelson, van der 
Mensbrugghe et al. (2013) highlight that “assumptions that are typically buried in 
technical reports can have significant effects on highly visible output measures.” They 
call for this to be a high priority for further research, in addition to improving the 
reliability of agricultural data to fine-tune the crop models.  
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Most researchers also warn that the 2050 scenarios probably understate climate 

impacts because new scientific findings suggest the likelihood of greater disruptions to 
agriculture (Ackerman and Stanton 2013). Also, the effects of climate change are 
expected to be even more severe in the second half of the century. Those who have 
extended their projections to 2080 and beyond warn of growing impacts on agriculture 
after 2050 (e.g., Fischer 2011). 

 
Scenario Modeling of Key Natural Resources 
 

Modeling of key natural resources, particularly land and water, are also important 
to review. These biophysical models look less at economic characteristics such as supply, 
demand, and price but rather focus on trends in resource use based on biophysical data 
and interactions. Outputs are measured in biophysical units, such as land use. They often 
provide the biophysical parameter for economic modeling. Here we review briefly some 
of the noteworthy modeling of land and water resources.  
 
Land 
 

As noted earlier, land use is treated in differing ways in the modeling reviewed to 
this point. In most economic models, available agricultural land is identified through 
relevant biophysical modeling, such as GAEZ for the FAO assessment. The conversion 
of new land to agricultural uses is then one of the outputs driven by model as the 
equilibrium is established between supply and demand. In the case of the FAO model, 70 
million hectares of additional agricultural land is required, an increase of 9%. 
Assumptions about land availability can be key to the results for other variables. For 
example, placing a modeling constraint on the expansion of agricultural land will produce 
much greater supply and demand imbalances and higher agricultural prices.  
 

Ausubel, Wernick, et al. (2012), for example, employ their land use model to 
project the pressures on uncultivated lands from the demands of a growing population 
and changing diets. Their findings are relevant to the discussion of feeding the world in 
2050 in part because they come to their conclusions from different parameters than do the 
socio-economic models. Their conclusion is, interestingly, cautiously optimistic. They 
suggest that we may be nearing the point of “peak farmland.” This would mean that so-
called “land sparing” – the extent to which uncultivated land remains in forest or other 
states – could actually increase by 2050. As such, existing resources could be adequate to 
fulfill future food needs. Their findings are cautionary because they note the “wild card” 
of global biofuels production as a factor that will have great influence on such a scenario; 
in fact, it already has in their model, interrupting global agricultural land-use trends.  
 

Wirsenius, Azar, et al. (2010) illustrate what can be done by incorporating FAO 
economic modeling into biophysical “what if” scenarios. They start with the FAO 
baseline, which suggests that by 2030 global agricultural area will expand from the 
current 5.1 billion ha to 5.4 billion ha. They then model four scenarios for their impacts 
on land use. Faster growth in livestock production efficiency (basically feed efficiency) 
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reduces land use from 5.4 billion to 4.8 billion ha. A 20% shift from beef to less land-
intensive pork and poultry reduces that further, to 4.4 billion ha. Finally, they estimate 
another 15% reduction in the world’s wealthier regions from a broader shift to diets 
relying less on meat and from reductions in food waste. 
 

In a similar way, Tilman, Balzer et al. (2011) take global food demand estimates 
and model the implications for land use of intensification and extensification scenarios. 
They find that meeting global food demand by bringing more land into production 
(extensification) would result in one billion more hectares of land being cleared by 2050, 
with high levels of greenhouse gas emissions and nitrogen use. By contrast, the scenario 
of moderate intensification of production in low-productivity regions would reduce land 
demands by 80%, cut emissions by two-thirds, and slightly reduce global nitrogen use. 
 
Water 
 

The Comprehensive Assessment of Water Management in Agriculture 
(CAWMA) is a good recent example of attempts to integrate biophysical and economic 
information for policy-relevant scenario assessment (de Fraiture, Wichelns et al. 2007). 
The model relies on IMPACT for food demand and supply, and uses WATERSIM to 
simulate the same for water. They start with estimated crop demand to 2050 and estimate 
that water use for such production will need to increase by 70%-90%. The goal is to 
model five “what if” scenarios to assess the impact of different possible approaches to 
investment in water resources on our ability to meet global agricultural water demands. 
Notably, climate change is not considered in this simulation in order to make the outputs 
comparable. As explained earlier, this makes the results less relevant as forecasts but 
more relevant to policy-makers because the results of different approaches are easily 
compared. Briefly, the five scenarios and their results: 
 

1. “Rainfed Optimistic” – Assumes that economic and environmental costs of large-
scale irrigation prompt no increase to 2050 in irrigated crop production, the 
development focus instead being improved water management by poor, rural 
smallholders. It is optimistic because the scenario assumes that 80% of yield gaps 
are closed. The result – water needs would be adequate to meet global agricultural 
demand. 

2. “Rainfed Pessimistic” – Only 20% of rainfed yield gaps are closed, necessitating 
a 53% increased in rainfed cropland to meet food needs. This has high 
environmental costs, and many countries have to increase their food imports 
significantly. Food insecurity increases, to the highest level of any of the 
scenarios considered. 

3. “Irrigation Expansion” – Assumes large investments in irrigation, particularly in 
Sub-Saharan Africa and Asia, to reduce food dependence. The cost is high – 
US$400 billion – and the 33% increase in irrigated area supplies less than one 
quarter of the expected rise in food demand. Food security improves for many, 
but this approach brings added pressure on freshwater resources, more than 
doubling the number of people suffering water scarcities to 2.6 billion in 2050. 
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4. “Irrigation Yield Improvement” – In this simulation, the priority is improved 
efficiency in the use of land and water. This closes 75%-80% of the yield gaps, 
expands irrigated cropland globally by 9%, meeting half the additional demand 
for food by 2050. It is not inexpensive – US$300 billion – and there is a 32% 
diversion of freshwater resources to agriculture. 

5. “Trade” – A final scenario allows much of the rising demand for food to be met 
by trade, with relatively water-abundant grain producers – USA, Canada, 
Argentina, etc. – exporting greater volumes to water-deficient countries. This 
reduces water stresses, but many potential obstacles make the scenario less likely, 
among them affordability for less developed importing countries, high energy use 
in international trade, and government wariness of excessive import dependence. 

 
The authors conclude with a normative scenario designed to highlight optimal 

water-resource investment. This is extremely useful, as the limitations are clear in each of 
the five simulations. The authors model a portfolio approach that recognizes that different 
strategies will make sense in different regions. For example, in Sub-Saharan Africa a dual 
approach is followed, with a significant expansion of irrigation for cash crops, while 
efficiency gains are pursued for smallholders on rainfed lands. Overall, the simulation has 
yield increases of 58% for cereals on rainfed lands based on a 31% improvement in water 
productivity, while irrigated agricultural yields rise 55% based on a 38% increase in 
water efficiency. Strong regulations limit environmental impacts, intensification limits 
additional demands for agricultural lands, and there is only a 13% increase in freshwater 
withdrawals for agricultural production in 2050. 
 

Again, the value of such a detailed set of controlled simulations is that they allow 
policy-makers to assess the likely impacts of different approaches to a more narrowly 
defined challenge. One limitation of this study is that none of the scenarios represents a 
“business as usual” approach against which different alternatives could be compared. 
Another is that climate change impacts might well shift the priorities and outcomes for 
water investment.  
 
Modeling broader questions 
 

The number of questions policy-makers face as they contemplate the long-range 
future is much broader than the specific variables of agricultural productivity, biofuels 
expansion, and climate change. Key concerns include the extent to which developing 
countries adopt Western diets high in animal protein, the sustainability of continued 
reliance on large quantities of fossil-fuel-based inputs on large monoculture farms, the 
positive impact of reducing inequality in access to food, and the impact of high price 
volatility on agricultural production and distribution. Such questions do not lend 
themselves easily to global quantitative modeling, precisely because the range of 
variables is so high. Still, quantitative projections remain important even with such broad 
uncertainties, and modelers have sought to quantify such alternative paths. 
 

Reilly and Willenbockel categorized these as “exploratory scenarios” designed to 
draw out defined “storylines” (see Reilly and Willenbockel 2010 for a more extensive 
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summary, pp 3055-3057) Again, such exercises have the goal of charting broad societal 
pathways, quantifying some of the implications, and highlighting the key drivers of 
change. The Millennium Ecosystem Assessment (MA) is a good example (Carpenter, 
Pingali et al. 2005). The four scenarios and their main outputs can be summarized briefly: 
 

1. “Global Orchestration” – characterized by global trade liberalization and 
cooperation as agriculture moves to large industrial production, with limited 
environmental management. The result is high global per capita calorie 
availability, with a 40% decrease in child hunger. But environmental damage is 
significant, with a projected loss of 50% of Sub-Saharan Africa’s forested land. 

2. “TechnoGarden” – with high technological development, low trade and 
investment barriers, and the internalization of many environmental externalities in 
the global North. Private investment transforms developing country agriculture 
through intensification, dramatically increasing production in Sub-Saharan Africa. 
Food production and hunger levels are similar to scenario one. 

3. “Adapting Mosaic” – has greater local and regional diversity, as WTO 
negotiations and global climate talks fail. The results vary widely from region to 
region, and food production globally is much lower than the previous two 
scenarios. 

4. “Order from Strength” – features high trade barriers, limited global cooperation, 
little attention to ecosystem management. Weak agricultural investment generates 
large cropland expansion, and climate change contributes to hunger and mass 
migration in Africa. Food output grows very slowly to 2050, while child 
malnutrition increases. 

 
The researchers use the results to highlight the dangers of “reactive” versus 

“proactive” environmental management and of fractured versus coordinated global 
approaches to trade and economic cooperation. Interestingly, none of the scenarios 
presents a crisis of global food production, as production per capita increases in all four 
cases. Willenbockel (2009), in a review of the MA and of an International Energy 
Agency assessment of climate scenarios, points to the importance of the MA findings 
that: societies are stressing ecosystems; those at greatest risk are the rural poor; some of 
the poorest countries face the most difficult environmental challenges; and global leaders 
must integrate environmental sustainability through global cooperation. 
 

Similarly, French researchers used the Agribiom model for the Agrimonde project 
to compare a business-as-usual scenario (high-growth industrial agriculture derived from 
the MA’s Global Orchestration scenario) to one based on equity and agro-ecological 
intensification of agricultural production. Such modeling, in this case based not on 
economic factors but biomass, contrasts current paths with an optimal alternative path to 
explore the consequences of each. In both, it is assumed that the world produces enough 
food, the questions are how and at what cost? For Agrimonde, part of the answer is 
complete equity in which diets of 3,000 kilocalories are assumed for all people in all 
countries. They find that we can meet future food needs even if yield growth is slower 
due to a shift away from industrial agriculture and toward smaller scale farms using agro-
ecological practices. The exercise also clarifies the perhaps-unwanted impacts of such a 
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path. To achieve this hypothetical future, there would need to be a 39% increase in 
cropland to make up for low yield growth, though researchers point out it can come 
largely from pasture because we would rely less on meat-based diets. There would also 
need to be a stunning 740% increase in global food trade, as surplus regions supply 
deficit regions (Paillard, Treyer et al. 2011). There is not accounting for how food-deficit 
regions would afford such a dramatic increase in imports. 
 

Erb, Haberle et al (2009) offer one of the more extensive efforts to model 
alternative scenarios. Like Agribiom, the model is not economic, based instead on the 
supply and demand for available biomass from crop and grazing land. They use FAO 
estimates for their baselines on population, economic growth, agricultural productivity 
growth, and land use. Climate change and bioenergy scenarios were modeled, as were the 
impacts or four different diets, from “western high meat” to relatively low meat-based 
diets. Livestock models ranged from intensive to humane to organic. Land use for crops 
was varied from the FAO’s baseline of a 9% increase to a larger 19% increase. The result 
is an impressive but somewhat dizzying array of 72 different scenarios.  
 

They synthesized the results to assess a “wholly organic” future and an 
intermediate scenario. They conclude that the present path (high meat, industrial 
production) is feasible but only with high conversion of new crop and pasture land (20% 
instead of the FAO’s baseline of 9%) and intensification of production. The low-meat, 
organic scenario was also feasible, with similar land needs (for grains for human 
consumption instead of for the expansion of grazing for meat production). The impacts of 
climate change would depend a great deal on the unknown of CO2 fertilization. 
 

Other interesting efforts in this regard include a detailed literature review on the 
evidence base for climate mitigation from organic agriculture (Azeez 2009). IFPRI 
modeled a scenario of a 50% reduction in meat demand to 2050, in developed countries 
then also in China and Brazil. Not surprisingly, the results show significant reductions in 
agricultural prices and in food insecurity measures, with the changes in China and Brazil 
having a greater impact (Rosegrant, Tokgoz et al. 2013, p. 98) As Van Dijk (2012) 
explains, through the IPCC a process is well underway to develop a coherent set of 
scenarios – Shared Socioeconomic Pathways (SSPs) – that can be used in a consistent 
way by researchers to generate comparable assessments.  
 
Conclusions 
 

We have provided a broad overview of the ways in which researchers have 
attempted to quantify our ability to feed the world in 2050. While this by no means 
represents an exhaustive review of the relevant literature, it does provide an 
understanding of the sources for many of the widely quoted estimates of global food 
needs in 2050. It should also provide reassurance that many of these numbers have not 
been pulled out of thin air, but rather they are based on relatively reliable data and careful 
modeling that attempts to integrate biophysical and economic trends and relationships. 
Our review suggests, however, that the levels of uncertainty in both areas and the 
sensitivity of long-range results to small variations in basic assumptions make any such 
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results highly speculative. Harkening back to Reilly and Willenbockel, these should not 
be taken as forecasts. Unfortunately, that is often how they are presented, usually through 
no fault of the modelers themselves. 
 

Overall, we would concur with Reilly and Willenbockel that we are not faced 
with Malthusian futures. Thus there is no need for the kind of alarmist productivism often 
occasioned by some of these projections. Such warnings fuel everything from large-scale 
land acquisitions, in the name of looming food scarcity, to the expansion of input-
intensive industrial farming, despite the resource constraints that prompted IAASTD to 
call into question that development path. 
 

In fact, the FAO’s 2012 projections of 60% increases in agricultural supply and 
demand seem a good starting point for discussion. They can allay some of the worst fears 
that population growth and changing diets will overwhelm our ability to produce food, 
while at the same time acknowledging both the uncertainties in such projections and the 
known factors – particularly biofuels expansion and climate change – that have not yet 
been adequately considered. 
 

Reilly and Willenbockel are particularly concerned with how researchers deal 
with these uncertainties, which are inherent in the food system as a complex socio-
ecological system, particularly in light of trying to model to such a long-term horizon like 
2050. They usefully distinguish three types of uncertainty: technical, methodological and 
epistemological. Technical uncertainty relates to the quality of data available. 
Methodological uncertainties arise from a lack of sufficient knowledge to create an 
adequate model with suitable structure and functional forms of behavioral equations. 
Epistemological uncertainties refer to models' completeness or ability to deal with 
changes in human behavior or values, randomness of nature, technological surprises 
and/or "black swan" events. (p 3050) 
 

In an overview article on the AgMIP project, von Lampe, Willenbockel et al. 
(2013) offer more specific suggestions related to improving the quality and usefulness of 
the modeling itself. From their model inter-comparison, they synthesize four types of 
differences found in the modeling: 
 

1. Parameters and assumptions that the literature suggests should be within a 
narrower range, e.g. the high agricultural productivity growth assumptions in 
some models, noted earlier. 

2. Better economic data is needed to inform the models, e.g., to sensitive 
assumptions such as demand elasticities, or land use, as pointed out by Hertel 
earlier. 

3. Better data is needed from other disciplines, especially on biophysical processes 
about which there remains great uncertainty. 

4. Finally, there are uncertainties the authors write “will not be resolved by research 
within the foreseeable future,” including such basic parameters as GDP growth. 
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They conclude with a call to use a range of assumptions and present a range of 
results from such modeling, in order for it to be useful to policy-makers. “Exploring the 
outcomes from a range of plausible drivers is essential, not least as these drivers in part 
depend on decisions on public policies and private investments.” 
 

Among the most useful drivers to model are those that are most susceptible to 
policy intervention. Beyond the predictive value of economic modeling, such research 
should help illuminate the consequences of policy and behavioral change. Biofuels 
scenario modeling, for example, has not received the attention it deserves given the 
importance of the issue to food production and resource use and given the prominent role 
of public policies in promoting (or potentially discouraging) such use.  
 

Perhaps even more striking is the absence in most of the modeling of the impacts 
of reductions in food loss and waste, which prevent an estimated one-third of food from 
nourishing anyone (FAO 2011). Many of the policy tools are certain, such as improved 
storage and infrastructure in developing countries and standards and public education to 
reduce retail and consumer waste in developed countries. The FAO is actively 
campaigning on this issue. Surely those who warn of looming food shortages in 2050 can 
develop clear scenario modeling to estimate the impact of, for example, a ten percentage 
point reduction in food loss by 2050. Under such a scenario, the FAO’s baseline estimate 
of 2050 agricultural needs might drop again, from 60% to 50%. Kummu, de Moel et al 
(2012) estimate, for example, that reducing loss and waste to levels that are currently 
achievable could cut losses in half and provide enough additional food for one billion 
people. 
 

This review suggests the following conclusions regarding further modeling that 
can help address key decisions facing policy-makers: 
 

 Global estimates are useful, but national and regional figures are far more 
instructive. As noted earlier, there is no “we” who feed “the world.” Global 
adequacy of projected food supplies can hide a plethora of inadequacies at the 
regional, national, and local levels. This will be all the more true as climate 
change impacts agricultural systems, with many of the poorest regions expected to 
be hit the hardest. While trade will be essential to addressing shortfalls, it would 
be a mistake not to assess regional food production capacities and focus on 
closing yield gaps, as many researchers have suggested.  

 Public and private investment in developing country agricultural 
productivity is a top priority. We have seen how sensitive future food supplies 
are to increases and decreases in agricultural productivity. While it would be 
helpful if modelers could improve the quality and consistency of data they use in 
their projections, we do not need to wait for those projections to invest in 
developing country agriculture. 

 The priorities that should guide those investments are less a modeling 
question than a public policy question. As the CAWMA project on water 
investments suggested, a portfolio approach tailored to the specific needs of a 
given region will be optimal for maximizing productivity within given resource 
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constraints. The same will be true for other agriculture-related investments. As 
Hillebrand’s pessimistic “trend growth” scenario suggests, failing to raise 
productivity and food security in the regions that have been left behind will have 
dire consequences for the world’s poor. Some of the normative modeling – 
Agrimonde, Millennium Ecosystem Assessment, etc. – offers a clear warning 
about paths that are not proactive on ecosystem management or cooperative in 
economic and environmental policy. 

 Modeling is likely to offer only limited guidance on the need for a transition 
to more sustainable methods. We have seen how alarmist projections can lead to 
reflexive investment in large-scale industrial agriculture. Yet long-term resource 
constraints extend to many of the fossil-fuel-based inputs on which such systems 
depend. Normative modeling suggests that the environmental costs of such an 
approach are high, yet lower-yield agro-ecological methods would demand 
unsustainable tracts of new agricultural land to meet global food needs. Global 
long-range modeling will provide less guidance in such matters than a focus on 
scaling up proven strategies for the sustainable intensification of food production. 

 Uncertainties related to climate change are a particular challenge for 
modelers. The AgMIP effort is a worthy and important attempt to improve 
modeling and increase the value of that modeling for assessing climate change. 
Uncertainties will inevitably remain, of course, making it incumbent on 
researchers to present their results transparently regarding the levels of 
uncertainty. Basic modeling parameters, however, need to be established so that 
the most widely quoted studies on feeding the world in 2050, such as from the 
FAO, include some accounting for climate change. 

 2050 is too short a time horizon to assess long-term sustainability. As noted 
earlier, climate change and related resource constraints will have increasing 
impacts over the course of this century. Most models project far greater disruption 
to agricultural production after 2050 than before. Long-term modeling needs to 
account for this. Perhaps more important, given the difficulties of modeling to 
such a distant time horizon, policy-makers need to recognize that 2050 estimates 
may well be optimistic.  

 Long-range economic modeling generally minimizes the impacts of volatility, 
as supply and demand resolve within the models. Yet we anticipate a future of 
increased volatility in the weather, affecting agricultural systems, and in 
agricultural markets, thanks to thin reserves and increasing financial speculation. 
More attention is needed to incorporate volatility into global long-range economic 
modeling  (see Munier 2012, for example) .  

 Uncertainties about biofuels expansion should be less challenging and the 
area deserves more focused attention. As we’ve seen, first generation biofuels 
expansion competes directly and indirectly for crops and resources, exerting 
upward pressure on food prices. Second generation biofuels should exert less 
pressure, but uncertainties remain. Meanwhile, most economic models to date 
have failed to take into account the likely and possible pathways for first 
generation biofuel expansion. To the extent such markets are driven by 
consumption mandates and other public policies, it is incumbent on modelers to 
represent the costs of such policies in their long-range projections. To date, they 
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haven’t. Fischer’s excellent scenario work with the IIASA model is now out of 
date, and subsequent efforts still rely on unfounded assumptions about possible 
biofuels paths. AgMIP’s attention to the impact of advanced biofuels after 2030 is 
helpful, but it begs the more important question facing policy-makers: Can we 
feed the world if we are simultaneously feeding our vehicles from the same crops 
and lands? 

 Other direct contributors to supply and demand imbalances deserve 
prominent attention. This need not come from economic modelers, but it could. 
Reductions in food waste – farm-to-market as well as at the retail and consumer 
levels – can have a direct impact on the accessible supply of food. An estimated 
one-third of food is lost or wasted (FAO 2011). Obviously, reducing such losses 
would make a great deal more food available for consumption while reducing 
resource use. It is striking that the principal economic models reviewed here do 
not model scenarios of even moderate food-loss reduction, which in developing 
countries would come primarily from improvements in storage and other 
infrastructure to reduce post-harvest and processing losses. This is, in itself, a 
valuable development goal.  

 
Needs for future research 
 

 Biofuels scenarios, including public policy analysis: Research needs to catch up 
to this very recent development, with careful modeling of both biofuels expansion 
scenarios and, to the extent possible, analysis of the impacts of consumption 
mandates and other public policies. Such research is important because, on the 
one hand, such policies may be critical to encouraging practices that undermine 
food security, while on the other, energy markets may well be more decisive in 
determining the expansion trajectories for biofuels. In the latter case, society may 
need to consider a different set of policies to regulate the impact of energy prices 
on food security.  

 The better integration of energy scenarios into agricultural modeling: The 
long-term energy outlook has implications beyond biofuel expansion. It is directly 
relevant to the economic viability of high-input agriculture, reliant as it is on 
fossil-fuel-based inputs. If these rise in cost (or decline in availability), 
developing countries should be wary of agricultural development paths that 
increase their reliance on imported inputs. In other words, is IAASTD right that 
business-as-usual is not an option, and if so what is the alternative? 

 Climate change and its impacts on agriculture: In addition to AgMIP’s 
valuable initiative and the scientific community’s ongoing efforts to improve our 
understanding of the impacts of global warming on our climate, there is a need for 
additional research on regional and crop-specific impacts, particularly in the 
developing world. Adaptation is local, and it needs to be guided by sound 
agricultural and economic analysis. Such research would focus less on global food 
provision and more on local strategies for climate-resilient agriculture. 

 Bringing stakeholders to the table: Research should include a process to bring 
researchers into direct dialogue with the farmers who are on the frontlines of such 
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strategies and with developing country governments, which will be key to 
implementing them. 

 
 
Timothy A. Wise is the Director of the Research and Policy Program at the Global 
Development and Environment Institute at Tufts University.  Inquiries can be directed to 
tim.wise@tufts.edu. 
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