

Modeling the transition of French Agriculture in a 4per1000 future

Laure BAMIERE (INRAE, UMR Economie Publique)

.01

Laure Bamière / Agriculture & Climate in the NorthEast : Soil & Ecosystem Health, Tufts University

.02 21st February 2020

Soil C storing practices

Arable crops:

- Expansion of cover crops : increase frequency and duration of ground cover
- No-tillage: suppression de tout travail du sol sauf contrainte technique et sauf pour la destruction des prairies et des cultures intermédiaires
- New organic C inputs: not already spread on agricultural soils under current management practices (e.g. composted greenwastes, sewage sludges and biowastes, digestates)
- Expansion of temporary grasslands: at the expense of silage maize, or increase in existing temporary grasslands lifespan
- Agroforestry : 75 trees/ha, 24 m inter-row, soils > 1m, plots >1ha
- Hedges : plots >8ha

Laure Bamière / Agriculture & Climate in the NorthEast : Soil & Ecosystem Health, Tufts University

.03 21st February 2020

Permanent Grasslands:

- * Moderate intensification of extensive grasslands: +50 kg N/ha
- Animal grazing instead of mowing : substitution of 1-2 mowing by grazing

Vineyards:

Grass cover of vineyards: expansion of permanent or temporary cover on every row

Laure Bamière / Agriculture & Climate in the NorthEast : Soil & Ecosystem Health, Tufts University

.04 21st February 2020

Methodology : overview

Methodology : implementation cost assesment

« additional cost » = « cost » C storing practice – « cost » current practice

Cost = loss or gain for the farmer

♦ Δ overheads

- Δ inputs (fertilizer, feedstuff, ...)
- Δ crop management operations (labour, machinery, fuel)
- Dedicated investments (e.g. tree planting)

☆∆ revenue

- ▲ yield
- New revenue (e.g. sale of wood)
- Change in land allocation (e.g. crop area substituted with trees or hedges)
- Excluding « optional subsidies »
 - E.g. Common Agricultural Policy payments, agri-environmental measures, regional subsidies
- Constant annuity with a 4.5% discount rate

Laure Bamière / Agriculture & Climate in the NorthEast : Soil & Ecosystem Health, Tufts University

.07 21st February 2020

Methodology : assumptions and data sources

Costs calculated assuming constant land allocation and livestock numbers, constant technological context and price system, all corresponding to the 2009-2013 reference period

Static historical reference period 2009-2013 : 5 year average

***** Use of public statistics and data sources :

- Crop areas : Annual statistics of agriculture
- Reference yields, prices, and crop gross margins : Farm Accountancy Data Network
- Cropping practices : National survey on cropping practices

Impacts of C storing practices on yields

- Simulated yield variation (%) applied to the reference yield
- Constant milk and meat yield => adjustment of the feed ration
- Yield variations of temporary grasslands and sillage maize are compensated with a substitute feed ration

Laure Bamière / Agriculture & Climate in the NorthEast : Soil & Ecosystem Health, Tufts University

Additionnal C storage potential and costs

SOC storing practices	Additional soil C storage	Additional soil C storage	Complete GHG budget	Cost for farmer	Soil Carbon Storage cost	Soil Carbon Storage cost
	(tC/ha/yr)	(tCO2e/ha/yr)	(tCO2e/ha/yr)	(\$/ha/yr)	(\$/tC)	(\$/tCO2e)
Expansion of temporary grasslands	0,192	0,703	-0,903	98 (-43; 284)	511 (-261; 1 800)	139 (-71; 491)
Moderate intensification of extensive grasslands	0,213	0,781	0,010	30 (13; 41)	140 (65; 1 284)	38 (17; 350)
Grazing instead of mowing (permanent grasslands)	0,362	1,328	-1,054	79 (-91; 158)	219 (-3 014; 560)	59 (-822; 152)

1€ = 1,08 US\$

Laure Bamière / Agriculture & Climate in the NorthEast : Soil & Ecosystem Health, Tufts University

.09 21st February 2020

Marginal C storage cost curve

Conclusion and policy implications

- There is no « one-size-fits-all » solution to increase carbon storage in soils …
- ↔... rather a combination of good practices at the right place
- => It is important to account for heterogeneity for the design of a cost-effective policy
- Study used in the frame of the EU Common Agricultural Policy reform for the design of the French national voluntary eco-scheme
- In France, high soil C storage targets can only be achieved with the full enforcement of cover crops and agroforestry, and with the expansion of temporary grasslands in crop rotations.
- Need to ensure coherence between existing policies and, ideally, account for bundles of ecosystemic services in an integrated policy.
- A policy aiming at supporting additional C storage in arable land must not come at the expense of the preservation of existing carbon stocks in permanent grasslands and forests

Laure Bamière / Agriculture & Climate in the NorthEast : Soil & Ecosystem Health, Tufts University

Thanks for your attention!

http://institut.inra.fr/Missions/Eclairer-les-decisions/Etudes/Toutes-les-actualites/Stocker-4-pour-1000-de-carbone-dans-les-sols-francais

