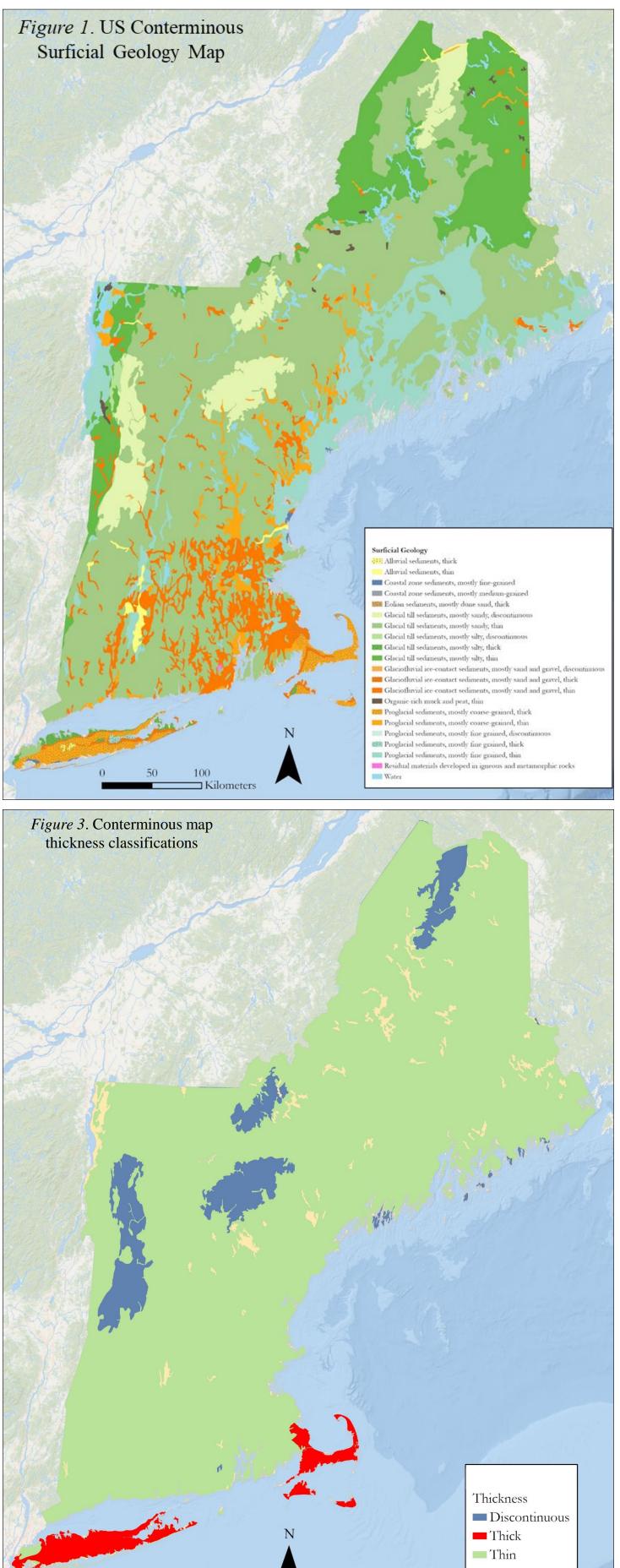
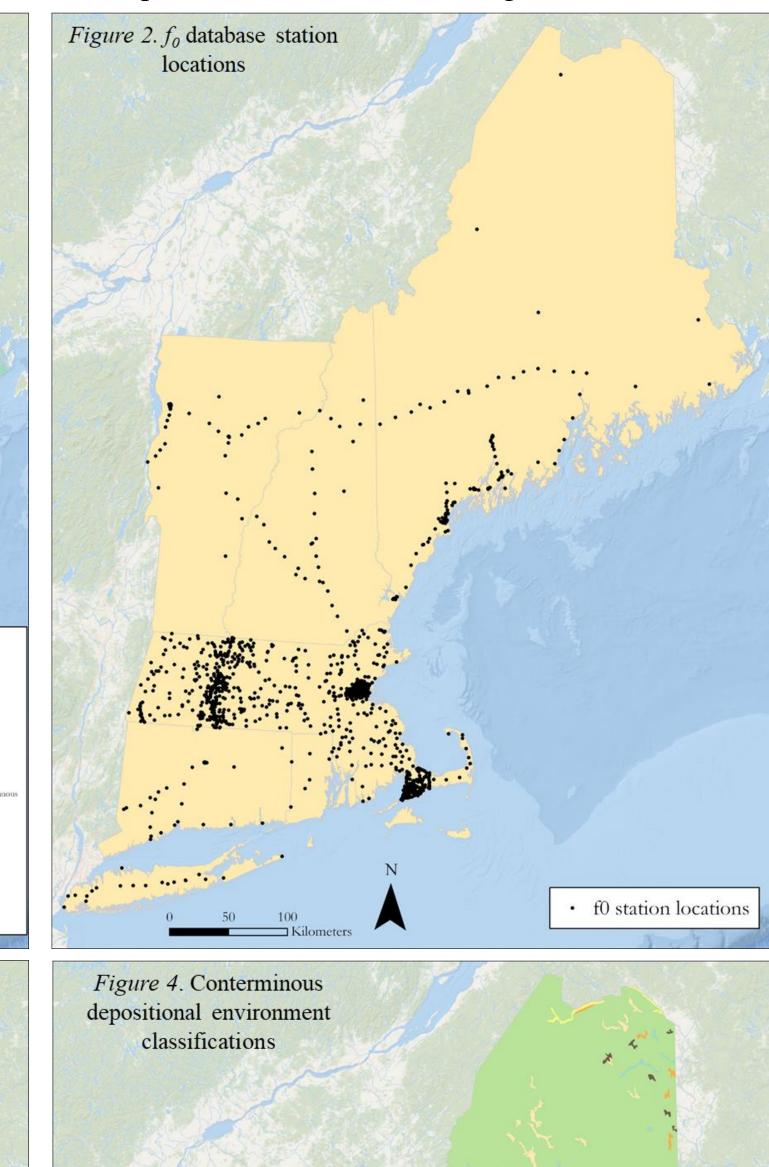
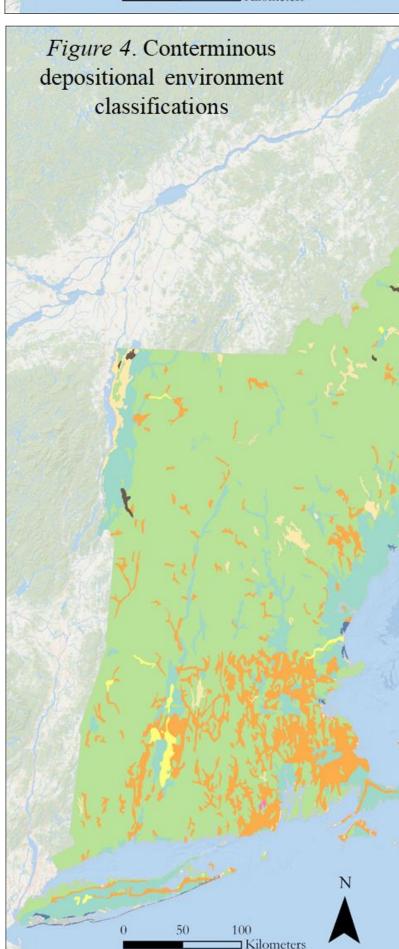
Advances in Geospatial Modeling of Seismic Hazards **Poster # 24**

Abstract


In this research, we develop a broad understanding of soil amplification in glaciated terrain by classifying each surficial geologic unit in the New England region with an f_0 distribution. We group 1625 f_0 measurements, computed using Nakamura's HVSR technique (Nakamura, 1989), by surficial geologic unit from the Conterminous US surficial geology map (Soller et al. 2009) using the methodology that Wills and Clahan (2006) used to group Vs30 measurements. We then calculate measures of central tendency and dispersion for each unit. Using this approach, we observe that thick proglacial sediments on Cape Cod and Long Island tend to have the lowest f_0 measurements, consistent with a deep soil profile. We also see that the marine clays in Boston, the coast of Lake Champlain and the alluvial sediments in the Connecticut River Valley tend to have the next lowest frequencies, which we attribute to sediment thicknesses less than what is observed on Cape Cod and Long Island. Finally, we observe that the blanket of till covering the majority of New England tends to have high f_0 values in the region, indicating shallow sediments. We also establish estimates of sediment shear-wave velocity for each of the surficial geologic units based on a combination of in-situ measurements and expert opinion. Using the common relationship of $f_0 = Vs/4d$ which relates f_0 to shear wave velocity and depth, we discuss what our f_0 distributions mean for soil amplification and site response prediction in New England.




Dataset

To develop our f_0 database, we compiled HVSR measurements from prior projects and then supplemented with out own collection

- 570 stations in the Greater Boston area from Yilar et al. (2017)
- 198 stations on Cape Cod from Fairchild et al. (2013).
- 545 stations from Steve Mabee (Massachusetts geological survey, personal communication) across Massachusetts and in the Connecticut River Valley.
- 487 stations of our own field campaign covering New England using major highways to targeting geologic deposits where we expected local amplification of seismic shaking.

Geology based f_0 model of New England

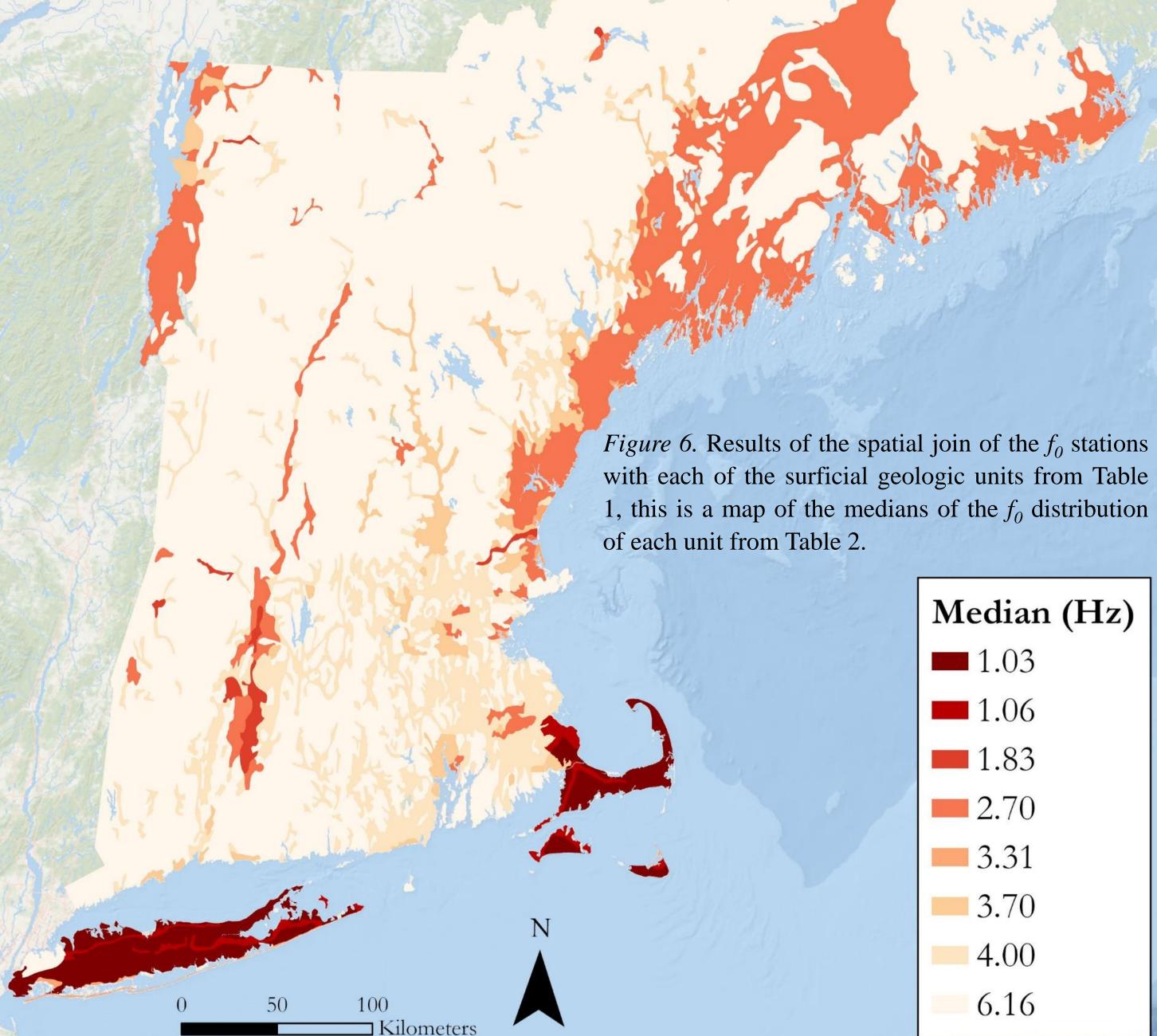
Marshall Pontrelli¹, Dr. Laurie Baise¹, Dr. John Ebel², Dr. Steve Mabee³, Dr. Weiwei Zhan¹ Tufts University¹, Boston College², UMASS Amherst/Mass Geological Survey³

Seismological Society of America, Spring Meeting, Hyatt Regency, Bellevue, Washington, April 20, 2022

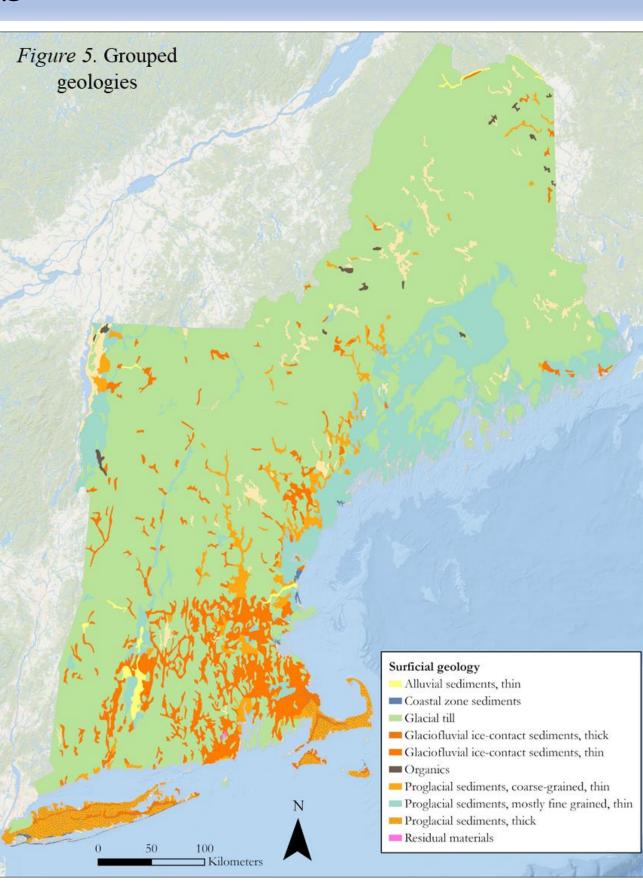
Grouping f_{θ} **points by surficial geology**

- . Spatial join the f_0 dataset to the Conterminous geology dataset.
- 2. Count the number of stations in each unit.
- 3. Find the units with few stations in them (not enough to make a distribution).
- Logically combine units with few stations with units with many stations (Table 1).
- After units are combined, perform the spatial join again and calculate the median and interquartile range of each unit's f_0 distribution.

New surficial name	Surficial unit groups	Thickness Thin		
Glaciofluvial ice-contact sediments, thin	Glaciofluvial ice-contact sediments, mostly sand and gravel, thin; Glaciofluvial ice-contact sediments, mostly sand and gravel, discontinuous			
Proglacial sediments, fine grained, thin	Proglacial sediments, mostly fine grained, thin; Proglacial sediments, mostly fine grained, discontinuous	Thin		
Glacial till	Glacial till sediments, mostly sandy, thin; Glacial till sediments, mostly sandy, discontinuous; Glacial till sediments, mostly silty, thin; Glacial till sediments, mostly silty, discontinuous			
Proglacial sediments, thick	al sediments, thick Proglacial sediments, mostly coarse-grained, thick; Proglacial sediments, mostly fine grained, thick; Alluvial sediments, thick; Glacial till sediments, mostly silty, thick; Eolian sediments, mostly dune sand, thick			
Proglacial sediments, coarse grained, thin	Proglacial sediments, mostly coarse-grained, thin	Thin		
Alluvial sediments, thin	Alluvial sediments, thin	Thin		
ciofluvial ice-contact sediments, thick Glaciofluvial ice-contact sediments, mostly sand and gravel, thick		Thick		
Coastal zone sediments	stal zone sediments Coastal zone sediments, mostly fine-grained; Coastal zone sediments, mostly medium-grained			
Organic-rich muck and peat, thin	Organic-rich muck and peat, thin	Thin		
Residual materials	Residual materials developed in igneous and metamorphic rocks	Thin		


Table 1. Surficial geologic groupings

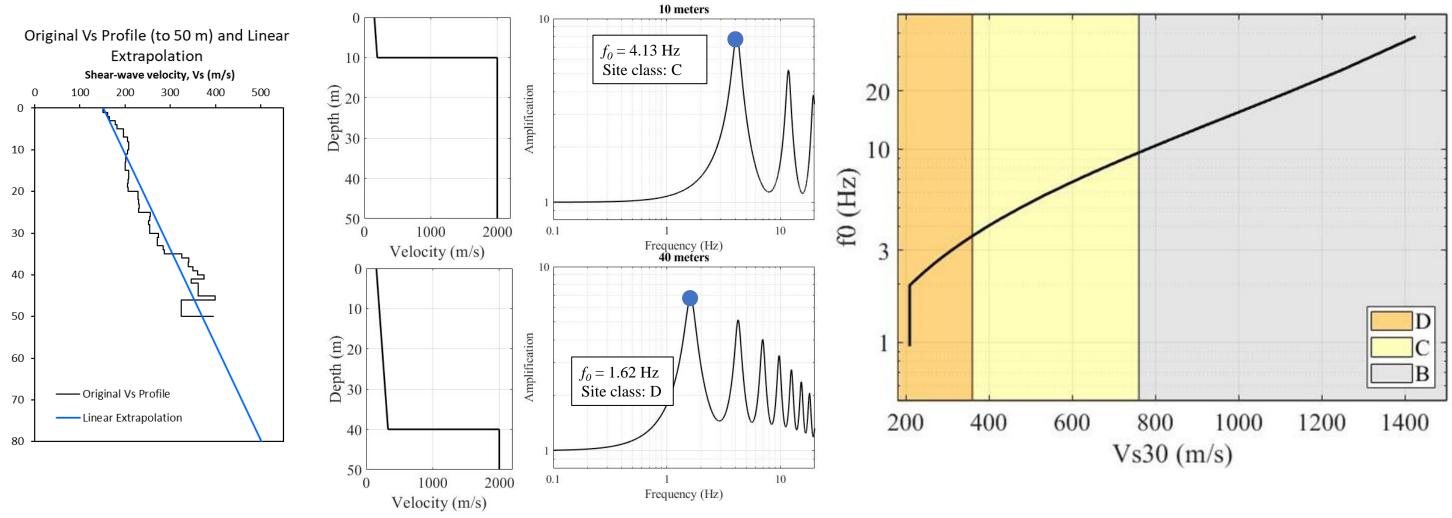
Results


After joining the f_0 dataset to the grouped Conterminous surficial map, we get an f_0 distribution for each unit. Table 2 shows the number of f_0 stations in each unit with the unit's respective f_0 median and interquartile range as well as an estimate for the unit's range of velocity values. The map shows the distribution of f_0 medians in space.

Surficial unit	Thickness	# Stations	Median (Hz)*	IQR (HZ)*	$Vs_{avg} (m/s)^{\tau}$	
Glaciofluvial ice-contact sediments, thin	Thin	461	4.00	6.60	220-300	
Proglacial sediments, mostly fine grained, thin	Thin	381	2.70	3.65	150-220	
Glacial till	Thin	359	6.16	10.15	300-500	
Proglacial sediments, thick	Thick	182	1.03	0.28	180-250	
Proglacial sediments, coarse-grained, thin	Thin	74	3.70	3.47	220-300	
Alluvial sediments, thin	Thin	62	1.83	1.59	170-250	
Glaciofluvial ice-contact sediments, thick	Thick	32	1.06	0.23	180-250	
Coastal zone sediments, mostly fine-grained	Thin	26	3.31	1.60	150-220	

Table 2. f_0 medians, IQRs and average shear wave velocity estimates for each unit, along with that unit's # of stations and thickness. We compiled these Vs estimates from various sources and using engineering judgement (Thompson et al 2014, NH State Geological Survey, MA Geological Survey, Hager Geosciences).

Methods



Main results from the analysis

- Glacial till tends to have the highest f_0 values. • The thick classified sediments (Proglacial and
- glaciofluvial) tend to have the lowest f_0 values and are located on Cape Cod and Long Island.
- Fine-grained proglacial and coastal zone sediments have median f_0 values of 2.7 and 3.3 Hz respectively and are located on the Maine coast, Lake Champlain coast, and Boston Basin
- Alluvial sediments have a median f_0 value of 1.83 Hz and are located predominately in the Connecticut River Valley.

Surficial unit	Unit code	Thickness	# Stations	ln(median)	ln(IQR)	Median (Hz)	IQR (Hz)	$Vs_{avg} (m/s)$
Glacial till	1	Thin	359	1.82	1.47	6.16	10.15	180-250
Glaciofluvial ice-contact sediments, thin	2	Thin	461	1.39	1.42	4.00	6.60	220-300
Proglacial sediments, coarse-grained, thin	3	Thin	74	1.31	1.13	3.70	3.47	180-250
Coastal zone sediments, mostly fine-grained	4	Thin	26	1.20	0.52	3.31	1.60	300-500
Proglacial sediments, mostly fine grained, thin	5	Thin	381	0.99	1.16	2.70	3.65	150-220
Alluvial sediments, thin	6	Thin	62	0.61	0.74	1.83	1.59	150-220
Glaciofluvial ice-contact sediments, thick	7	Thick	32	0.06	0.21	1.06	0.23	170-250
Proglacial sediments, thick	8	Thick	182	0.03	0.27	1.03	0.28	220-300

Table 3. Median and IQR f_0 values and average Vs estimates for each surficial unit. Each unit has a code which corresponds to the Box and Whisker plot x-axis label.

Figure 8. Every velocity profile has a Vs_{avg} , an f_0 , a Vs30 and a depth. It is therefore possible to relate f_0 to Vs30-based site class by estimating the overburden Vs_{avg} using the surficial geology (Table 3 average velocities). A low f_0 value from one of our maps indicates a deep deposit with a range of possible velocity values depending on the deposit geology. This derivation is also shown in Hassani and Atkinson (2016).

- lower f_0 values than the typical till veneer in the rest of the region.
- from the conterminous US surficial map (Figure 3).
- distances.

Fairchild, G.M., Lane, J.W., Jr., Voytek, E.B., and LeBlanc, D.R., 2013, Bedrock topography of western Cape Cod, Massachusetts, based on bedrock altitudes from geologic borings and analysis of ambient seismic noise by the horizontal-to-vertical spectral-ratio method: U.S. Geological Survey Scientific Investigations Map 3233.

Hassani, B., Atkinson, G.M. (2016) Applicability of the Site Fundamental Frequency as a VS₃₀ Proxy for Central and Eastern North America. Bulletin of the Seismological Society of America 2016; 106 (2): 653-664. doi: https://doi.org/10.1785/0120150259 Nakamura, Y. (1989) A Method for Dynamic Characteristics Estimation of Subsurface using Microtremor on the Ground Surface. Railway Technical Research Institute 30(1): 25-33.

Soller, D.R., Reheis, M.C., Garrity, C.P., and Van Sistine, D.R., 2009, Map database for surficial materials in the conterminous United States: U.S. Geological Survey Data Series 425, scale 1:5,000,000 [https://pubs.usgs.gov/ds/425/]. Thompson, E.M., Carkin, B., Baise, L.G., and Kayen, R.E., 2014, Surface wave site characterization at 27 locations near Boston, Massachusetts, including 2 strong-motion stations: U.S. Geological Survey Open-File Report 2014–1232, 27 p., http://dx.doi.org/10.3133/ofr20141232 Wills, C. J., and K. B. Clahan (2006). Developing a map of geologically defined site-conditions categories for California, Bull. Seismol. Soc. Am. 96, 1483-1501.

Yilar, E., Baise, L.G., Ebel, J.E. (2017) Using H/V measurements to determine depth to bedrock and Vs30 in Boston, Massachusetts. Engineering Geology 217, 12-22

USGS Award Nos. G20AP00040 and G20AP00041

School of

Engineering

Seismological Society of America

Discussion

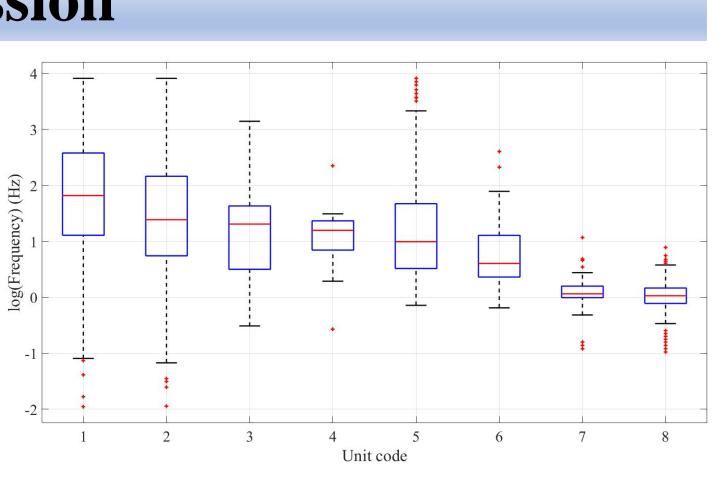


Figure 7. Box and whisker plot of each surficial unit's f_0 distribution in units of ln(Hz).

Conclusion

1. New England glaciated terrain consistently has high impedance contrasts due to high velocity bedrock and the soft, unconsolidated nature of many of the typical glaciated terrain deposits.

2. When grouping the f_0 measurements by surficial geology, the large, unconsolidated surficial units display

Cape Cod and Long Island have the lowest f_0 values in our study region, which we interpret as being the deepest thicknesses of sediments in the region, a statement that is consistent with the thickness classifications

The marine clay sediments in the Boston Basin, the coast of Lake Champlain and the Maine coast tend to have low f_0 values. These f_0 values are very driven by depth to bedrock and therefore can vary widely in short

5. The thin, mostly fine-grained proglacial sediments in Maine tend to have higher f_0 values than the rest of the thin, mostly fine-grained proglacial sediments. In future work, we will treat the Maine Coast independently. 6. The river floodplain/glacial lake structure in the Connecticut River Valley also has low frequencies.

References