Viewing Statistics & Summarizing Data

Written by Barbara Parmenter, revised by Carolyn Talmadge on 1/14/2016

Overview
Often you need to get information for selected sets of records or see data summarized for types of features. For example, planners need to understand the distribution of land use within a community. They will want to know how many acres of each land use the community has in general, and in working with specific area plans, they will need to know the acreage of land use within that area (e.g., how much residential land is there within walking distance of a proposed transit node).

ArcGIS has two tools that make it very easy to get this kind of summary information. You can view summary statistics on the fly for selected records, or you can create a new table of summarized information by an attribute category.

Viewing Statistics for Selected Records
In addition to selecting features that meet certain criteria, you often need to view summary information about these features (e.g., how many total acres of vacant land are available for development near transit nodes). To view this kind of numeric data, ArcGIS has a statistics function in its attribute table. Get used to using this function as it can be very useful for exploring your data layers.

1. For this tutorial, we are using the layer SomervilleParcels04. Add the data from M:\City\Somerville\MIS\SomervilleParcels04.
2. Right click and open the attribute table for the layer you are exploring.
3. Right-click the heading of a field that contains numeric data you want to see and click Statistics... In the example below, we are looking at the column for Total Assessed Value (TOTAL_ASSE) for parcels in Somerville:
In the *Statistics* dialog box, you'll see information about the values in the field whose heading you clicked. This includes the count of selected features, the sum of the numeric value, as well as the mean, minimum, maximum, and standard deviation, plus a histogram (frequency chart) showing the distribution of values.

4. Here are the results for Somerville parcels so you can see that in 2004, the GIS data set records 14,637 total parcels, for a sum of $7,091,188,500 of total assessed property value, with the highest assessed value for a single parcel being $41,667,500:

![Statistics of Somerville Parcels](image)

5. If you want to see statistics for another numeric field, click the *Field* drop-down arrow and click the field's name.

6. Let’s say we now want to see the total assessed value for just residential parcels in Somerville (make sure to select for all spelling versions of “Somerville”). We would first select residential parcels using the *Select by Attribute* function, then use the *Statistics* function as shown below – you see that at the bottom of the table, it says that 10,516 parcels have been selected – now when we use the Statistics function it is reporting for just those selected parcels:
7. The results look like this:

![Selection Statistics of Somerville Parcels04](image)

8. Close out of the Statistics dialog box when you are finished exploring statistics of the selected features.

See a full description of how to use this tool on the online ArcGIS 10 Help - Viewing Statistics for a Table

Creating a Summary Table of Aggregated Information by an Attribute Category Class

This tool works very well for summarizing numeric information by a category type value in an attribute field. For example, calculating the total acreage and assessed value of parcels by land use category within walking distance of a transit station (e.g., knowing how many acres of residential, commercial, industrial, and civic land, and the total valuation within each of those categories). **Note:** Generally you would ONLY summarize on a category type of attribute column, **NOT** on a column containing numeric data. See the example below.

You can create a summary table for all the records in a layer (e.g., all parcels in a community) or just the selected records (parcels within walking distance of a transit station). Instructions can be found in the ArcGIS 10 online help for Summarizing Data in a Table.

In this example, we will create a summary table of information about parcels within ¼ mile of a T station in Somerville, MA. We have a layer of parcel polygons with assessor attributes, and MBTA stations (you can download this layer from MassGIS). The parcel layer includes an attribute field called CLS, which indicates R for residential, C for commercial, I for industrial, E for exempt (public or other civic institution that is exempt from property taxes), and some blank values (unknown). This is what we mean by a “category” type of attribute value. We want to know, within the ¼ mile buffer, how many acres of each land use there are and what the total valuation of property is, as well as the valuation of land and structure value. Thus we are summarizing numeric information by category type of land use.

1. We first use the Select by Location function to select parcels that are within .25 miles of a T station:
2. The results look like the following image:

![Select By Location window](image)

3. Next, open the attribute table for the parcels layer.
4. Right click on the **CLS** field name and choose **Summarize**. Always choose the field that has the categorical data by which you want things summarized!

![Summarize dialog box](image)

5. Expand the attribute field for any field with numeric data that you want to summarize. In our case we want to summarize information for total assessed value (TOTAL_ASSE), and for Land Value and Building Value.

![Summarize new table](image)

6. Scroll down and find LAND_VAL and choose Sum and then the same for BLDG_VAL.
7. Make sure you check *Summarize on the selected records only*. In this case we don’t want information for all of Somerville!

8. Specify the output table by navigating to an appropriate folder and giving the table an appropriate name (e.g., `LandUseAcreageValuationnearTransitStops.dbf`) – don’t use the default name of `sum_output.dbf`! You will lose track of what you are doing. Be sure to choose dBASE table for **Save as Type** if you are using Shapefiles as shown below.

9. Add the new table to ArcMap.

10. To view the table you must be in **View data by Source** in the Table of Contents. You should see your table – right click on it and choose Open.
11. Your new table summarizes the information you requested:

<table>
<thead>
<tr>
<th>OID</th>
<th>CLS</th>
<th>Count_CLS</th>
<th>Sum_TOTAL_ASSE</th>
<th>Sum_LAND_VAL</th>
<th>Sum_BLDG_VAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C</td>
<td>177</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>106</td>
<td>242685000</td>
<td>135440900</td>
<td>106644100</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>52</td>
<td>109881800</td>
<td>82976600</td>
<td>26965200</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>11</td>
<td>33725900</td>
<td>31566700</td>
<td>2159200</td>
</tr>
<tr>
<td>4</td>
<td>R</td>
<td>1149</td>
<td>576038900</td>
<td>289142500</td>
<td>286886400</td>
</tr>
</tbody>
</table>

Note that by default a COUNT is always included in the summary table so you don’t have to specify that when you are creating the table – in the example above, we see there are 106 commercial parcels near transit stops in Somerville, and a total assessed value for those commercial parcels of $242,085,000.

Also note that calculating the average, minimum, and maximum values is often helpful. In this case it would help you to see the range of values in each land use category, and knowing the average value would help you compare valuation against a similar summary table calculated for all Somerville parcels OUTSIDE the transit buffer.

WARNING: The Summarize function is best used for summarizing numeric data by category. It is not good for summarizing numeric data by other numeric data – e.g., don’t summarize by a population attribute in a census block, ArcMap has other better-suited tools for that! Always begin your Summarize task by right-clicking on an attribute field that contains category type.

For more tips and tutorials, please visit our [website](gis.tufts.edu)