Introduction

California’s Central Valley is called the “salad bowl” of the United States due to its high fruit and vegetable production. The Central Valley’s farmers rely on irrigation water to grow crops due to the semi-arid climate. Water has become increasingly scarce in the past four years due to drought. What percentage of agricultural land in the Central Valley shifted into the production of higher water need crops, lower water needs crops, or remained the same during the CA drought? It might be expected that farmers in the water-limited Central Valley would choose to plant more acreage with crops that require lower water inputs or to leave fields fallow rather than to plant crops with high water need. This is the hypothesis I tested with my model.

The answer to this question could be useful to policymakers who wonder whether farmers are adapting their crop choices to dwindling water supplies or if market incentives or other factors hold more sway over crop choice.

Methods

![Crop Trends in California’s Central Valley](image)

Case 1: Cotton

- **2010**
- **2014**
- **2010 - 2014**

Crop Trends in California’s Central Valley, 2010. The Central Valley, outlined here in red, spans the Sacramento, San Joaquin, and Tulare Lake groundwater basins defined by California’s Department of Water Resources (an area of nearly 5 million hectares). It is California’s principal area of fruit and vegetable production, and the crops produced within the valley are highly diverse and constantly changing. While the patterns of crop production depicted in this map resemble a patchwork quilt in many regards, there are regions dominated by the production of a single crop, such as the large blue swath of rice north of Sacramento and the cluster of red midway between Bakersfield and Fresno representing cotton. Both rice and cotton are water-intensive crops. This complicated dataset was collected by satellite imagery prior to the onset of California’s current drought. In this analysis, I will use the 2010 dataset as a baseline for crop changes due to drought. Because data was collected by satellite, its representations are imperfect, particularly in areas with small plots of land containing various crops (ground resolution of 30 meters).

Case 2: Almonds

- **2010**
- **2014**
- **2010 - 2014**

Crop Trends by Water Need in California’s Central Valley, 2010 – 2014. This map represents change in cropped use from 2010 to 2014 with colors ranging from dark green for a decrease in water need (from crops of high to low water need or to fallow plots), to pale yellow for no change in crop to dark red for an increase in crop water need (from fallow land or crops of low water need to high). This cropped raster dataset is a simplified attempt to quantify the amount of land converted to crops of higher or lower water need over the course of three years of drought. While a checkerboard of change is scattered throughout the state, there are some regions with a common pattern in crop change. One example is the area along Route 5, due west of Fresno, which was under extensive almond production in 2014 although it was mostly fallow in 2010. According to my model, this change represents an increase in water need and is therefore shown in orange and red. Because I created this map from generalized water need data, representations of crop change and crop significance for water use are imperfect.

- **Methods**

 1. Reclassify to categorize each crop type into one of three water need categories (high, low, or none/fallow) based on data from the FAO
 2. Raster Calculator to subset the reclassified 2010 data from 2014 data to create a crop change raster that represents the drought period
 3. Clip to constrain the crop change raster area to the Central Valley.

- **My completed model includes three principal geoprocessing procedures:**
 1. Reclassify to categorize each crop type into one of three water need categories (high, low, or none/fallow) based on data from the FAO
 2. Raster Calculator to subset the reclassified 2010 data from 2014 data to create a crop change raster that represents the drought period
 3. Clip to constrain the crop change raster area to the Central Valley.

Discussion

Overall, the attribute table for my final change raster (the result of the model) indicated that 20% of Central Valley cropped use did not change from 2010 to 2014. 42% changed to crops with lower water needs, and 38% was converted to more water-intensive crop production. With this bird’s-eye view of crop change, my data model shows that crop production did not shift dramatically toward water conserving crops due to the California drought. Rather, it appears that many farmers chose more water-intensive crops as chosen water-conserving crops (see graph below). According to the New York Times, California cotton production declined by 35% from 2013 to 2014, while almond production has risen 44% since 2003 (Strom 2014). Despite their large water need, nuts and fruits can bring in ten times more earnings per acre than low water vegetable crops like spinach, and this market incentive likely explains the increased plantings of water intensive crops. This analysis could benefit from quantifying the exact water needs of each type of crop and re-classifying such by a measurable amount of water rather than a simplified (high/low) category of water need. This would be a more specific approach. As my model stands now, it probably both under- and over-estimates water need depending on the crop. Almonds, for example, can be a very high water-need crop or an average water-need crop depending on the environmental conditions, so by labeling them as a “high-need” crop I am generalizing several options into one category. Another strategy for analysis would be to incorporate related factors, such as climate impacts and crop growth stage, into the relationship between crop choice and water need. Farmers also plant multiple crops on the same land at different times of year; accounting for multi-cropping could improve the accuracy of my results.

Bibliography

- McLaughlin, M. and Bukata, R. (2014) Crop Change by Water Need in California’s Central Valley, 2010 – 2014. This map represents change in cropped use from 2010 to 2014 with colors ranging from dark green for a decrease in water need (from crops of high to low water need or to fallow plots), to pale yellow for no change in crop to dark red for an increase in crop water need (from fallow land or crops of low water need to high). This cropped raster dataset is a simplified attempt to quantify the amount of land converted to crops of higher or lower water need over the course of three years of drought. While a checkerboard of change is scattered throughout the state, there are some regions with a common pattern in crop change. One example is the area along Route 5, due west of Fresno, which was under extensive almond production in 2014 although it was mostly fallow in 2010. According to my model, this change represents an increase in water need and is therefore shown in orange and red. Because I created this map from generalized water need data, representations of crop change and crop significance for water use are imperfect.

- McLaughlin, M. and Bukata, R. (2014) Crop Change by Water Need in California’s Central Valley, 2010 – 2014. This map represents change in cropped use from 2010 to 2014 with colors ranging from dark green for a decrease in water need (from crops of high to low water need or to fallow plots), to pale yellow for no change in crop to dark red for an increase in crop water need (from fallow land or crops of low water need to high). This cropped raster dataset is a simplified attempt to quantify the amount of land converted to crops of higher or lower water need over the course of three years of drought. While a checkerboard of change is scattered throughout the state, there are some regions with a common pattern in crop change. One example is the area along Route 5, due west of Fresno, which was under extensive almond production in 2014 although it was mostly fallow in 2010. According to my model, this change represents an increase in water need and is therefore shown in orange and red. Because I created this map from generalized water need data, representations of crop change and crop significance for water use are imperfect.