COUPS + QUAKES = COVERAGE? Comparing News Reportage to Vulnerability and Shocks in Africa

INTRODUCTION
For many parts of the world, media coverage—particularly media coverage produced by the so-called Global North—is sporadic at best. It follows predictable patterns often referred to as ‘co and quakes syndromes’. When there are moments of extreme crisis, coverage flows to the region of concern. Audience attention spans and media resources being limited, however, the news often fails to maintain its spotlight once the initial shock fades. Additionally, many crises—whether because they lack an audience or last too long—fail to register on the media radar altogether.

Yet given the importance of media attention for garnering outside support and aid—at least on a philanthropic if not political level—this situation is potentially dire. This study therefore examines which places and peoples are subject to such inconsistent patterns of coverage. Specifically, two questions are addressed: 1) Where are there gaps in media coverage for vulnerable populations? and 2) Does media coverage follow the same patterns as shocks (e.g. conflict incidents and natural disaster) over time? Expressed geographically, we can begin to see where the news media may be missing the mark.

METHODOLOGY
Using the African continent circa 2015 as a case study, this analysis takes several steps to address the questions at hand. First, using the Global Database of Events, Language, and Tone (GDELT), data was gathered on the prevalence of each country in global news coverage. Figures are normalized against the total volume of records from GDELT’s Global Knowledge Graph. The resulting reports, averaged on annual and monthly bases, captures relative frequency of each country’s news coverage.

Second, a vulnerability analysis was prepared at the country-wide level. Many vulnerability analyses include a component related to exposure to shocks (e.g., natural disasters), but the focus here is on the ability to recover from shocks. As media coverage is often most useful in bringing attention to the need for help, this approach is particularly relevant. A combination of proxy indicators for poverty, education, and health were used to represent key factors in any community’s ability to withstand shocks; the percentage of the total population living below the World Bank poverty line of $1.90/day; the adult literacy rate; and a mortality rate (specifically, the likelihood of death before age 60). In cases where data is scarce, and necessary to extrapolate from related indicators and earlier years. This data was imported into a map of the African continent and classified using a ranking system to arrive at the range of vulnerability scores presented.

Third, these vulnerability rankings are compared to the overall media coverage in a bivariate map of the continent. Both the vulnerability and coverage data were grouped into three categories of low, medium, and high ranges, using a left to right Distribution with seven classifications and then grouping into three sets. Overlaying the possible outcomes results in nine possible categories ranging from low coverage / low vulnerability to high coverage / high vulnerability, with intermediate steps.

Fourth, several collections of shock data were captured and joined (spatially where possible) to Africa administrative boundaries. This data includes information on natural disasters such as droughts, epidemics, and storms (EMDAT); a variety of conflicts ranging from protests to military engagements (ACLED); and a record of domestic and international terrorism incidents (GTD). These datasets provide information on the range of shocks experienced across the continent. The volume of conflict and terrorism incidents, normalized by population, are shown here, whereas for natural disasters—which are few but often devastating—the proportionate number of persons affected is mapped.

Fifth and finally, this shock data was compared to the media coverage. Included is a scatter plot graph of the total shocks compared to the relative rate of coverage, with trendline. These mini-case are also shown, including each type of shock experienced by the country for a 12 month period. These mini-case of the Democratic Republic of the Congo, Somalia, and Tanzania were chosen because they represent a crosssection of the vulnerability rankings (medium, high, and low, respectively) and also experienced a range of shocks throughout the year.

LIMITATIONS
There are limitations of working at both the country level and with such a wide variety of data. On the former, this analysis is restricted to a very generalized view of what is occurring within any given country, and how the population as a whole is experiencing those events or contents. For example, the income data can be easily skewed by resource-rich countries, and many above the $1.90 poverty line would still struggle to recover from shocks. However, the overall prevalence of poverty in the country can still demonstrate preparedness to respond to disaster and conflict. Of course, not all shocks are created equal. Much of this analysis, however, necessarily relies on the idea that the sheer volume of conflict, terror, or disaster incidents is most easily comparable and relatable to the volume of coverage received by a given country. Further analysis of this data might do well to weight and categorize incidents accordingly. It is also worth noting that the ACLED (conflict) and GTD (terrorism) data likely doublecount one another. However, since ACLED does not clearly distinguish incidents of terror—and given the prevalence of terrorism coverage in today’s media landscape—it is helpful to include the GTD data separately. The overall pattern remains relevant even if the totals are skewed. The data has other imperfections. Criteria are not always consistent across all countries gathering data, and it was not always possible to locate data for the target year of 2015. The GDELT (media) and EMDAT (disaster) data in particular are challenging. Some information appears to be missing or incorrect, likely due to how it is captured (or reported). The GDELT database may also pull coverage not related solely to the country in question (e.g. a query for “South Africa”)—although efforts were made to control for this. Although these limitations are cases for further reflection, the hope is that this study with its minimum provide a roadmap for alternative ways to consider the issue of media coverage geographically—particularly as it relates to what is truly happening on the ground—and suggest several paths for further research.

DISCUSSION
In the comparison of news coverage to vulnerability, the areas of most concern are those with high vulnerability but low coverage. Here, two countries meet these criteria: Côte d’Ivoire and Lesotho. This suggests that more attention is needed for these locations that are otherwise being missed. Arguably, those countries with high coverage and high vulnerability— Mali and Nigeria—are examples of the media getting it right. Perhaps these two countries are unreporting given Western military and economic interests at the time. Yet this hypothesis suggests an avenue for further exploration. Further impetus for such analysis might be indicated by the five countries with low coverage but only medium levels of vulnerability: Egypt, Ghana, Kenya, South Africa, and Zimbabwe. All are common places of interest to Western media. Similarly, Libya—the only country ranking a low vulnerability score but high coverage (not a terrible outcome, though perhaps a less efficient use of resources) — is unsurprising for 2015. Yet this may also reveal a weakness in the vulnerability analysis, as while Libya could have more capacity than some countries to rebound from shocks, the situation for many citizens was nonetheless serious at that time. This may be an area where the associated shock data can play a greater role.

Meanwhile, the correlation between incidents of shock and news reveal is generally in the trend we expected— as the volume of shocks increase, so does coverage. The R² value confirms that approximately 66% of the data is explained by the model, a fairly significant relationship, though by no means conclusive. Indeed, there are multiple outliers, particularly as more shocks are noted. Though the news media cannot be expected to report on every incident, such as Somalia do suggest severe underreporting. Furthermore, the Somalia graph for 2015 demonstrates several curious spikes and declines in coverage not otherwise aligned with the incidents of shock. Tanzania and the Democratic Republic of the Congo, meanwhile, are somewhat better aligned month by month through the DRC has low coverage overall. This may (part to be a result of media access to the countries in question, but would require further analysis to confirm.

There are clearly gaps in media coverage for vulnerable populations, some more severe than others. Global news also does seem to follow the general trend of capturing ‘coup and quakes’ but not on a universal basis. It is not possible here to conclude definitively whether one has a stronger influence on news reportage than another, but perhaps the better questions is what we as a society want to privilege when it comes to media coverage. What do we care about as an audience, and where can the media play a greater role in sharing the stories of those most in need of attention?