TAKING THE TRAIN?

Explaining MBTA Commuter Rail Ridership

INTRODUCTION

The MBTA Commuter Rail provides service from suburbs in the Boston Metro Area to Boston area stations, with terminal
stations at North Station and South Station. While using commuter rail may be faster particullarly at urshb hourt then stations at Nortts Station and South Station. While using commuter rail may be faster, particularly at rush hour, than using a
personan vehicle or other transit alternatives, people still choose not to use the Commuter Rail, as can be demonstrated by the
high yolune of poope dring at rush hew high volume of people driving at rush hour.
This study seeks to understand the personal vehidec and public transit alternatives to the MBTA Commuter Rail at each stop
to undertsand what option peopple ahe when deciding to use the Commurer Raio over anther mode and waha characteristics
of the alternatives may inspire people to choose them over Commuter Rail Understanding what transit and driving altermaof the a leernatives may inspire people to choose them over Commuter Rail. Understanding what transit and driving alterna-
tives are like a teach Commuter Rail stop may offer insight into why people are choosing or not choosing Commuter Rail for thesir trips to Boston, and how to encourage iriership. This roject explores what transit and dirining options exist for peopple
at every Commuter Rail station during weekday peak periods and how these alternatives, along with other commuter rail at every Commuter Rail station during weekday peak periods and how these alternatives, along with other commuter rail
factors, might impact the number of Commuter Rail riders at a station level. Other studies have examined what factors predict and explain transit ridership through multivariate regressions. Vehicle ca-
pacity employment density, service level and integrated ticketing have been found to affect ridership on bus rapid transit, pacity, employment density, esvicice level and integrated ticketing have been found to aftect ridership on busurapid transit,
light rail and street cars (Currie et. al 2013). A study on peak Metro ridership in Montraa found that average income, bus
ssir

METHODS

The methodology of this paper was derived from other studies that have examined ridership through multivariate linear regressions. however, this project focused on commuter rail ridership. The dependent variable for this analysis used 2012 com-
muter rail inbound boardings collected by CTPS. The independent variables for this analysis were created and collected using spatia and non-spatial dat
The environmental variabes included in this analysis were median income within a half mile, population density within a
hhal mile and job density within a half mile. These factors were calculated using walk buffers senerated based on ESRI's
network dataset on ArcGIS Pro. The variables for commuter rail service included the 8 AM commuter rail time to the Boston terminal station, the distance as
 minal station on a weekday and commuter rail on time performance, calculated by using Goog
distance to Boston stations, commuter rail schedules and the MBTA dashboard, ,espectively.
The studd also oxamined, driving time to the ermminal station on a peak week day using ArcGIS Pro network analyst, the aver-
age number of transit trips per day a transit stops within a half mile buffer of commuter rail stations, transit time to Boston

 bles with demonstrated multicollinearity. Single variable linear regressio
pereict tinbound boardings, to find which of them were most predictive.

RIDERSHIP BY STATION

RESULTS

Of trasis

CONCLUSION
This study found that the number of trains per day, of frequency of service and the distance to Boston, in the form of price, drive time, and Euclidean distance, have the largest inpact on commuter rail ridership. Of distance variables (all very highly
correlated) the drixing time to Boston at peak is ste most predictive of commuter rail ridership. This demonstrates that the correlated) the driving time to Boston at peak is the most predictive of commuter rail ridership. This demonstrates that the
more trains the MBTA runs, the more people will ride the commuter rail. However, this may not be a causal relationshi, as more trains the MBTA runs, the more people will ride the commuter rail. However, this may not be a causal relationship, at
the MBTA likely runs more trains because there is high ridership. High on-time pertormance had some impact on higher
comnuter rail boarding as well which isexpected commuter rail boardings as well, which is expected.
Of transit variables, miles to rapid transit, and transit time to Boston at 8 AM are the most predicitive of commuter rail rid-
ership, which again demonstrates the ereationship between distance from Boston and commuter rail ridership. This may ershi, which again demonstrates the relationship between distance from Boston and commuter rail ridership. This may
show that places close to Boston, that have transit sevvice or are near a rapid transit station, have lower ridership because
 demonstrating that as transit becomes less desirable and more time consuming, people switch to commuter rail. Future re-
search can examine the connection between commuter rai and transit price and times by adding a variable that is the differsearch can examine the comnection between commuter rail and transit price and times by adding a variable that is the differ
ence between the price and time of commuter rail. Adding a dummy variable that assesses whether having a transit option
impacts commuter rail ridership could dlso be added. impacts commuter rail ridership could also be added.
Finally, population and other variables within a half mile are not significant to the commuter rail. This is likely because
commuter rail stations often attract people fiom far away from the station. This makes weighting the ridership by population very difficult, as it is siffficult to know where commuter rail riders come from depending on the station. For example, Route very difificult, as it is difficicult to know where commuter rail riders come from depending on the station
128 has 30 boardings for every one person who lives within a half mile of the commuter rail station.
Finally, this analysis had limitations. The data on boardings is from 2012 . Also some stops could not participate in the re-
gression because they are new since 2012 . Finally, population buffers of a half mile were found to be inadequate. Futher gression because they are new since 2012 . Finally, population buffers of a half mile were found to be inadequate. Further
analysis should integrate a variety of buffer distances. distances.
lationships can inform policy Median Income in a Har aimed at aftecting and chang.
ing transportation paterns in

