Property taxes are collected by local governments to generate revenue. Property taxes consist of the assessed value of the property and a millage rate. A millage (mill) rate represents the amount per $1,000 of the assessed value of the property. Local governments have the legislative power to set and change their millage rates. Many municipalities operate under the assumption that millage rates should be lower in places that have higher property values. Additionally, local governments argue that places with lower property values need to have high millage rates to offset the difference in property tax collected by each household.

States like Massachusetts and California have implemented statutes that have limited their municipality's power in setting millage rates. Policy and planning officials are beginning to understand that property values are not strictly a function of assessed property value. It is important for government officials to examine which municipalities deviate from the property tax equation, by how much, and the spatial relationship of these places. By examining the spatial relationship of millage rates and property values in Connecticut, policy makers and planners can discuss ways to make property taxes more equitable.

This project aims to:
1. Illuminate the emerging spatial patterns of millage rates and property values in Connecticut from 2006-2016.
2. Determine how well property value predicts millage rates in Connecticut.
3. Examine if there are spatial patterns to the deviations in the predictions of millage rates.

Methods

The methods for this research project were two-fold: To understand the emerging spatial patterns, a Global Moran's I was run on yearly millage rate data from 2006-2016. Each year's results had a statistically significant p-value and a positive Moran's I index value, indicating a tendency towards clustering of the data. Next, space-time cubes were created for both millage rate and property value data. When creating the space-time cubes, the millage rate and property value were included as summary fields that would calculate the mean of each year for each town. Both time cubes were then used to run hot spot analyses for the variables. The time interval used was one year for both millage rates and property values.

To determine how well property value predicted millage rate, an ordinary least squares (OLS) regression was run. Yearly property values were available for 2007-2015 from the American Community Survey. The regression was created using 2007-2014 property data so the predicted values could be compared to the observed values in 2015. The box plot shows the distribution of millage rates for the State of Connecticut by year. The regression equation is Mill Rate = $158.50 - 10.55 \times \ln(\text{Home Value})$.

Discussion

There were five patterns detected throughout the hot spot analyses. A **Diminishing Cold Spot** represents a town that has been statistically significant cold/hot spot for 90% of the one-year intervals, including the final year. A **Persistent Cold/Hot Spot** represents a town that has been statistically significant cold/hot spot for 90% of the one-year intervals with no discernable trend indicating an increasing/decreasing in the intensity of the clustering over time. A **Sporadic Hot Spot** is a town with on-again and off-again hot spots. Less than 90% of the one-year intervals have been statistically significant hot spots, and none of the one-year intervals are statistically significant cold spots. An **Intensifying Hot Spot** is a town that has been a statistically significant hot spot for 90% of the one-year intervals, including the final year. A **New Hot Spot** is a town that has a statistically significant hot spot for the final year and has never been a statistically significant hot spot before.

For the Millage Rate Hot Spot analysis, 49.7% (84/169 towns) are either new hot spots, persistent hot spots, sporadic hot spots, or intensifying hot spots. Out of the eighty-four twelve towns are sporadic hot spots and sixteen towns are new hot spots. This means for 33% of the state, the millage rates from 2006-2016 have been statistically significant 90% of the years. Connecticut has been in an economic hardship for many years, and the increasing/persistent millage rates throughout the state illuminate that local towns are having to raise their millage rates to generate sufficient revenue.

When examining the Property Value Hot Spot Analysis, nine municipalities show a spatial pattern in median home value from 2007-2015. A closer look reveals that a pattern can be seen: the towns with an average median home values below $1M have millage rates 4.18-9.45 greater than Westport, one of the towns with an average median home value above $1M and the highest millage rate.