The Red Sea Base Race: Areas at Risk of Conflict in the Horn of Africa

Introduction
The countries in the Red Sea region and the Horn of Africa are experiencing an unprecedented rate of militarization due to the build-up of foreign bases. What started as primarily joint anti-piracy and anti-terrorism collaborations in the early 2000s has transformed into an arena where regional and global rivalries are playing out. Regional actors like the UAE, Saudi Arabia, Qatar, and Turkey seek to project their power in new areas as they vie for regional hegemony. Older actors like the US and UK have maintained and/or expanded their presence. In 2017, China established its first overseas military base in the strategic neighborhood, just 10km northwest of US, Japanese, and European military bases in Djibouti. The region is rich in natural resources and home to two critical chokepoints of global trade: the Suez Canal and the Bab al-Mandab strait, giving the competition commercial, geopolitical, and military dimensions. In addition to establishing military bases, states have also secured contracts and investments in major ports, allowing them to advance their security apparatus and economic interests. These developments offer opportunities and threats for both the foreign actors and the Red Sea littoral states. While there are no open hostilities among the powers right now, the region faces the possibility of increased destabilization and proxy conflicts amidst geopolitical, geoeconomic, and security competition. This analysis aims to identify the areas at risk of potential conflict among the external powers in the Red Sea and Horn of Africa regions.

Methodology
This project uses a proximity-based analysis to evaluate the risk of conflict. Proximity to Exclusive Economic Zones (EEZs), state borders, naval bases/military installations, and conflict areas were identified as driving factors for potential conflict. The international conflict literature identifies geographic proximity as a factor increasing the likelihood of conflict due to the relative ease of conducting nearby military campaigns; potential for territorial disputes; potential for resource disputes; and frequent interactions that could lead to conflict of interest. The literature also demonstrates that the previous occurrence of conflict is an indicator for future conflict. Proximity to borders and EEZs were used to capture the political/geographic and economic aspects of the regional conflict. Georeferenced ACLED conflict data for East Africa was used for the conflict analysis (Middle East data wasn’t included since data collection for the region did not start until 2015). For the military bases, a new geospatial dataset was created using reports, printed maps, and tabular data from SIPRI and the Brookings Institution.

A Risk Analysis was performed by converting each vector layer into a raster layer using the Euclidean distance calculation for the border, EEZ, and base data; and kernel smoothing for the conflict data. Areas that were closer to the EEZs, borders, military bases, conflict areas were considered high risk areas, and areas that were further away were considered low risk areas. Values were ranked from one to five, with one being the lowest risk. Conflict was ranked from one (least dense) to five (most dense). A raster calculator was then used to create a “Red Sea risk composite” that incorporated the data from the four maps.

An additional hot spot analysis was conducted to compare conflict incidences in two periods (2000-2009 capturing the post-9/11 anti-terrorism and anti-piracy involvement of external actors; and 2010 – 2020, capturing the “base race” period of the Red Sea rivals), to determine whether there were any changes in conflict intensity and location. After running the kernel smoothing tool, a raster calculator was used to calculate and map changes in conflict in East Africa. Decrease in conflict is indicated in blue, and increases in red.

Conclusion
The analysis shows that the area that has the highest risk for conflict is the Bab al-Mandab strait, which is understandable given the narrowness of the waterway, its importance for global oil trade/energy security, and the clustering of military installations and ports. The geography in general, however, ranks quite high for risk of conflict.

A look at the change in conflict analysis shows an increase in conflict occurrences around some of the military installations/ports on the Horn of Africa. This doesn’t mean that the ports/installations necessarily cause more conflict, but demonstrates the need for a closer look at the region using spatial, econometric and qualitative tools. Current trends suggest that the security issues and number of foreign actors will increase in the near future, and any security development will have effects beyond the Red Sea, considering the range of actors and global security networks within which they operate.

Furthermore, as militarization will not slow down soon, it is necessary for the involved parties, including the littoral states, to find avenues of dialogue and cooperation to prevent large-scale destabilization. The establishment and advancement of a “Red Sea Forum,” as suggested by the Brookings Institution, is one starting point.

Limitations
This study focused on identifying areas at risk of conflict based on factors related primarily to external actors. Additional research on the domestic situation and stability in the Red Sea littoral states is necessary for a more comprehensive analysis. This is especially important as conflicts could turn into proxy wars. More data about the types of weapons on bases could create a more robust security and risk assessment, but publicly available data in this area is limited. This report also did not evaluate the effects of non-military installations, like China’s Maritime Silk Road infrastructure projects, but these projects may also affect conflict risk, as China moves into the region as a rising global power.

Conflict Risk Analysis

Proximity: State Borders
Proximity: EEZ (12nm)
Proximity: Bases/Ports
Density: Conflict

Change in conflict zones, East Africa

The analysis shows that the area that has the highest risk for conflict is the Bab al-Mandab strait, which is understandable given the narrowness of the waterway, its importance for global oil trade/energy security, and the clustering of military installations and ports. The geography in general, however, ranks quite high for risk of conflict.

A look at the change in conflict analysis shows an increase in conflict occurrences around some of the military installations/ports on the Horn of Africa. This doesn’t mean that the ports/installations necessarily cause more conflict, but demonstrates the need for a closer look at the region using spatial, econometric and qualitative tools. Current trends suggest that the security issues and number of foreign actors will increase in the near future, and any security development will have effects beyond the Red Sea, considering the range of actors and global security networks within which they operate.

Furthermore, as militarization will not slow down soon, it is necessary for the involved parties, including the littoral states, to find avenues of dialogue and cooperation to prevent large-scale destabilization. The establishment and advancement of a “Red Sea Forum,” as suggested by the Brookings Institution, is one starting point.

Limitations
This study focused on identifying areas at risk of conflict based on factors related primarily to external actors. Additional research on the domestic situation and stability in the Red Sea littoral states is necessary for a more comprehensive analysis. This is especially important as conflicts could turn into proxy wars. More data about the types of weapons on bases could create a more robust security and risk assessment, but publicly available data in this area is limited. This report also did not evaluate the effects of non-military installations, like China’s Maritime Silk Road infrastructure projects, but these projects may also affect conflict risk, as China moves into the region as a rising global power.