years, as its mel
started to write t
by Bourbakiasa,
by its individual r
agated the Bourk
geneous like any
one member to al
various opinions.
this job remains
: member that the t
An intellectual construction endowed with profound unity, a hierarchy of abstract ' pakian vision of 1
However, as the B
ematics (if it has ¢
in the past.
Bourbaki sprea
and lectures. One
chitecture des mc
lished in 1947 an
article is a real ir
group didn't disc
5 tecture des math
usually didn’t exp
Mathématique: (i
writes that “Bour
phy, in contrast t
So how did B«
around three key
method, and the:
has become a we
cians take a sligh
always emphasizi
ory are no longer
applies to all dor
number theory u:
sis, geometry, anc
to mathematiciar
formed. In L'arc
“one can ask him:
ematical results]
more cohesion ar
on the contrary, :
fragmentation du
Mathematics is be

Towards Axioms and
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structures built on a foundation of axioms: this is how Bourbaki viewed mathematics,
The group’s beliefs gained many followers.

g

icolas Bourbaki did much more than write a voluminous and
ambitious mathematical treatise. During its golden years of
the sixties and seventies, the group also propagated a certain
vision of mathematics. This new ideology was adopted by many math-
ematicians around the world, and it even influenced some fields out-
side of mathematics. Remember that Bourbaki's global views of math-
ematics developed over the course ef the group’s first ten of fifteen

The ritual tea hour at the Institut
des Hautes Etudes Scientifiques
at four o’clock. In the foreground
are Jean Dieudonné, Alexandre
Grothendieck (from behind),
Michel Demazure, and Francois
Bruhat.
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cears. o+ its members completed the outline of their treat.se and
Jarted ‘o write the first volumes. Also remember that the views held
in Botr. ki as a group are not necessarily the same as the thcse held
bi its 1 lividual members. While some of the Bourbaki members prop-
anated e Bourbakian ideology quite faithfully, Bourbaki is hetero-
.ﬂfmcm; _like any group of humans. Opinions varied significantly from
ope me - iber to another, and it is a job for historians to sort out these
\arious «pinions. Given the secrecy and collective nature of Bourbaki,
this job rumains a hard one to this day. Finally, it is important to re-
membur that the times and the members have changed, and so the Bour-
hakian  i<ton of today is probably not the same as that of the fifties.
Howey 1, as the Bourbaki of today does not express its vision of math-
omatics - il it has one at all), we must settle for studying the vision held
in the past.

Bour!~uki spread its conception of mathematics through various texts
and leci:ires. One of the most important of these is the article L'ar-
chitectire des mathématiques (“The Structure of Mathematics”) pub-
lished in 1947 and signed by Nicolas Bourbaki himself. Although this
article i a real manifesto of Bourbaki's ideology, it appears that the
group dicin’'t discuss the article much before its publication. L'archi-
tecture <lvs mathématiques was probably written by Dieudonné, who
usually Jidn’t express himself subtly. Discussing this article in his book
Matherni.:tique: (récit), the author-mathematician Jacques Roubaud
writes that “Bourbaki calmy wields Neanderthalian clubs of philoso-
phy, in « ontrast to his habitual rabbit-like caution.”

So how did Bourbaki see mathematics? Its philosophy revolves
around three key notions: the unity of mathematics, the axiomatic
method, and the study of structures. Today the unity of mathematics
has becormie a well-worn topic that comes up every time mathemati-
clans take a slightly global look at mathematics. Mathematicians are
always emphasizing that geometry, algebra, analysis, and number the-
ory are no longer separate topics; that modern mathematical research
applies to all domains; that, for example, the proof of a theorem in
number rheory uses a mixture of concepts and methods from analy-
Sis, geomietry, and algebra. Yet this unity was not so blatantly obvious
lo mathematicians of the thirties and forties, the era when Bourbaki
formed. In L’architecture des mathématiques, Bourbaki writes that
‘one can ask himself whether this extravagant proliferation [of math-
tmatical results] is the product of a vigorous organism that acquires
More colicsion and unity with every addition it receives, or whether,
on the contrary, if it is the outwards manifestation of an increasing
ragmeniiation due to the very nature of mathematics, and whether

, e ) Euclid developed a precursor to
Mathersoiics is becoming a Tower of Babel of autonomous disciplines, the axiomatic method.
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A stamp and portrait of Richard
Dedekind (1831-1916). Dekedind
was one of the fathers of
modern algebra.

David Hilbert (1862-1943).

isolated from one another in their goals, methods, and even in thej 1
language. In short, is modern mathematics a single mathemanque or
many mathématiques?”
Bourbaki’s reply to this question is clearly in favor of the singular
mathématique, which the group uses in the title of its treatise, Elememx
de mathématique. In the eyes of Bourbaki, this unity is strong, iy s
some respects even stronger than it is considered today. As Bourbaj
writes, “We believe that the internal evolution of mathematical sciences,
despite appearances, has strengthened the unity of its various Subjects
more than ever. It has created a sort of nucleus that is more cohesiye
than ever before. The most important aspect of this evolution is the ©
systematization of the connections between the various areas of math.
ematics. This is known as the axiomatic method.” :

The Axiomatic Method According ’
to Hilbert ;

What exactly is the axiomatic method? To begin with, an axiom is often {'
a self-evident principle whose validity is accepted without proof. An
axiom is a sort of fundamental truth, but an axiom can also be an in-
vented property or rule that has no immediate connection to reality. i
An axiomatic theory starts with the definitions of the objects it will
deal with. Then axioms (sometimes called postulates) that the objects
in question must obey are added. Finally, logical chains of reasoning, .-
whose validity can be verified without reference to intuition or expe- |
rience, lead from the objects and axioms to less obvious properties, -
called theorems. :

The most ancient example of the axiomatic method is found in Eu- *
clid’s geometry. In his Elements, Euclid of Alexandria presents geom- -
etry by starting with the fundamental objects of a point (“that which
has no part”), a line (“a length without thickness”), a curve, a plane,
and so forth. He proceeds by stating five axioms: 1) Given any two
points, a line segment exists that joins them; 2) A line segment can be
extended indefinitely; 3) A circle can be constructed with any given
center and radius; 4) All right angles are equal; and 5) If a line crosses
any two lines such that the sum of the interior angles is less than two
right angles, then the two lines cross when extended on the corre-
sponding side. The fifth axiom is equivalent to the famous parallel pos-
tulate (“Given a line and point not on the line, there exists a unigue
line passing through the point and parallel to the first line”), which
has made so many mathematical minds spin.
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From Bourbaki to Oulipo, Lévi-Strauss, and Piaget

e
n the fifties and sixties, Bourbaki’s vision of
mathematics influenced areas outside of

mathematics. In particular, it expressed itself in

literature with Oulipo (short for Ouvroir de
littérature potentielle, meaning “Workshop for
potential Literature”), a movement related to
surrealism. Created in 1960 by Raymond

Queneau and Francois le Lionnais, Oulipo aimed

to explore new forms of literature obtained by

imposing constraints  (“structures”) of a

mathematical nature. For example, Queneau

wrote a literary translation of Hilbert's

Foundations of Geometry, which he titled Les

fondements de la littérature d’aprés David

Hilbert ('The Foundations of literature according

to David Hilbert”). In this work, Queneau

imitates the axioms of geometry developed by

Hilbert by replacing the words “points,” “lines,”

and “"planes” by ‘“words,” “sentences,” and

"paragraphs,” respectively. The results of such

exercises are often hilarious. Oulipo, which

included some mathematicians (notably Jacques

Roubaud and Claude Berge), had direct contacts

with Bourbaki. For example, Queneau attended a

Bourbaki conference in 1962. Their humor, taste

for secrecy, and use of structures helped bring

the two groups together.

Bourbaki's structuralism was also fashionable
in French social sciences. Structuralism had
been developing in the social sciences since the
fifties, following the publication of Structures
¢lémentaires by the anthropologist Claude Lévi-
Strauss. Lévi-Strauss had met André Weil in 1943
in New York, which led to a small collaboration:
by using group theory, André Weil solved a
tombinatorial problem about marriage rules in
an Australian tribe. This contribution appeared
" an appendix of Lévi-Strauss's book. Another
Cross-disciplinary encounter was that of Jean
Dieudonne with Jean Piaget during a 1952
Conference on mathematical and mental
sttuctures. This led Piaget to consider the

Raymond Queneau (1903-1976) in 1951.

existence of a direct connection between the
structures in a child’s mental processes and the
mathematical mother-structures.

While Bourbaki’s structures were often
mentioned in social science conferences and
publications of the era, it seems that they didn’t
play a real role in the development of these
disciplines. David Aubin, a science historian who
analyzed Bourbaki's role in the structuralist
movement in France, believes Bourbaki's role
was that of a “cultural connector.” According to
Aubin, while Bourbaki didn't have any mission
outside of mathematics, the group represented
a sort of link between the various cultural
movements of the time. Bourbaki provided a
simple and relatively precise definition of
concepts and structures, which philosophers
and social sciences believed was fundamental
both within their disciplines and in bridges
among different areas of knowledge. Despite
the superficial nature of these links, the various
schools of structuralist thinking, including
Bourbaki, were able to support each other. So, it
is not a coincidence that these schools suffered
a simultaneous decline in the late 1960s.
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An extract from Les fondements de la
littérature d’aprés Hilbert by Raymond
Queneau. Published in La bibliothéque
Oulipienne, présenté par Jacques Roubaud
(Slatkine).

Group | (Incidence Axioms)

I, 1 There exists a sentence containing any two
given words.

Commentary: Obvious. Example: Consider the
two words “A” and “A.” There is a sentence
containing these two words: “A violinist gave an A
to the singer.”

I, 2 There exists at most one sentence containing
any two given words.

Commentary: This, on the other hand, is
surprising.

But let’'s consider two words such as “long” and
“bed.” It is clear that once the sentence containing
them has been written, namely, “For a long time |
would go to bed early,” any other expression like
“for a long time | would retire to bed early” or “for
a long time | never went to bed late” is a pseudo-
sentence that must be rejected in accordance with
this axiom.

Scholium: Naturally, if one wrote, “For a long
time | would retire to bed early,” it is the sentence,
“For a long time | would go to bed early” that must
be rejected in accordance with axiom 1.2. In other
words, In Search of Lost Time cannot be written
twice!.

I, 3 Any sentence contains at least two words.
There exist at least three words not all belonging
to the same sentence.

Commentary: Thus there are no sentences
consisting of a single word. “Yes,” “No,” “Hey,” and
“Psst” are not sentences. As for the second part of
the axiom: one thus supposes that the language in
question contains at least three words (this is

trivial for the case of French) and that no sentence
can contain all the words of the language (or aj|
but one, or all but two).

1, 4a There exists a paragraph containing three
given words not all belonging to the same
sentence.

Commentary: This immediately implies that a
paragraph must contain at least two sentences,

One will note that the statements of axioms I, 1
through |, 4 do not comply to axiom |,2 because ali
four require the words "words” and “sentences” for
their formulation, while this axiom states that
there can only be a single sentence containing
these two words.

This yields the following axiom of metaliterature:
Axioms do not obey the axioms.

1, 4b Every paragraph contains at least one
word.

Commentary: “Yes,” “No,” “Hey,” and “Psst,”
which are not sentences according to |, 3, do not
constitute paragraphs by themselves.

I, 5 There exists at most one paragraph
containing three given words not all belonging to
the same sentence.

Commentary: Like I, 2, this axiom is an axiom of
uniqueness, the uniqueness of paragraphs in this
case. In other words, if three words not all
belonging to the same sentence are written in one
paragraph, one cannot reuse these words in
another paragraph. But, one might protest, what if
they all belonged to the same sentence in the
second paragraph? This axiom excludes this
possibility.

I, 6 If two words in a sentence belong to a
paragraph, then all the words in that sentence
belong to that paragraph.

Commentary: No commentary necessary. [...]

! Note that the opening line of Swann's Way, the first volume of Marcel Proust's In Search of Lost Time (Trans. C.K. Scott
Moncrieff and Terence Kilmartin), is “For a long time I would go to bed early.” Translator.
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rhe important thing here is not the content of Euclid’s axioms but
the fact that Fuclid founded a theory on axioms that he could use (or
jore accurately, believed he could use) to derive geometric construc-
rions and properties, such as the Pythagorean Theorem, rigorously. In
reality, buclid did not always use flawless rigor. He unwittingly used
many properties that were suggested by visual intuition rather than
included in the axioms or proved rigorously. A perfect example of this
is his first proposition, which consists of constructing an equilateral
triangle with a given side AB. To do this, Euclid draws two circles of
radius AB. one centered at A and the other centered at B. He then proves
that triangle ABC, where C is one of the two points where the two cir-
cleintersect, is equilateral. However, to prove this Euclid uses the prop-
erty that the two circles must intersect in at least one point, While this
is visually obvious, Euclid should have justified this statement rigor-
ously.

Despite this, what Euclid had developed was an important precur-
sor to the axiomatic method. Moreover, it is not at all easy to come up
with a coherent system of axioms for Euclidean geometry. In fact, this
was achicved only a century ago, primarily by the great German math-
ematician David Hilbert in his book Grundlagen der Geometrie (“Foun-
dations of Geometry”), published in 1899, Hilbert’s project did far more
than repair the flaws in Euclid’s axioms: it was a stamp of approval
for the modern axiomatic method in general.

What distinguishes the modern axiomatic method advocated by Bour-
baki from Euclid’s method? One main difference lies in its formal na-
ture: the inodern axiomatic method does not try to define basic con-
cepts (like points and lines) that the theory in question will discuss.
These basic concepts are treated as abstract entities whose nature and
concrete meaning are insignificant. To illustrate this, Hilbert jokes that
the “points,” “lines,” and “planes” used in the axioms of geometry could
just as well be called “chairs,” “tables,” and “beer bottles.” Only the
relations between the fundamental entities defined by the axioms are
important. The properties deduced from such a formal theory are
completely general, since they could apply to a very different set of
objects, as long as the axioms for that set of objects are the same. Later
we'll see the simple example of how axioms are used to define a struc-
ture called a group.

It's important to understand that mathematicians do not construct
sets of axioms directly out of nothing. The mathematician starts by
studying a certain set of objects, and then he develops a set of axioms
based on these objects. As Henri Cartan (one of the founders of Bour-
baki) cxplained in a 1958 lecture in Germany, “A mathematician who
Sets about proving a theorem has in mind certain well-defined

When A and B are the centers of
the circles, the triangle ABC is
equilateral.
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1. What is a Group?

non-empty set G is called a group if it is
Aequipped with a composition law, denoted
for example by %, that associates to each pair
(x,y) of elements in G an element denoted by

If the law * is commutative—that is, if
x *y=y*x forany x and y in G—then we say
that G is an abelian group. It is easy to deduce
numerous properties from the above axioms. As

Three Imp«

Let's illustrate the
and important m
define groups are
of this abstract 1
mathématiques:.

x*y (also in G) and satisfies the following an example, let’s prove that if x*y=x %z, I. The set
properties. then y = z. Multiplying the both sides of the additior
1. Associativity: for any x,y,z in G, equality x*xy=x%2Zz by x~! on the left yields 5> The set
X% (y % 2) = (X % y) % Z. x lx(x*xy)=x"1x(xx*xz). Then, by using - plicatior
2.  Existence of an identity element: axiom 1 followed by axiom 3, we obtain tegers m
there exists an element e of G such that ey =e x z. Finally, axiom 2 implies that this is product
exx=xxe=X foranyx in G. equivalent to y=z. QED. Almost identical ulo 7 is
3. Existence of an inverse for any reasoning shows that the identity element is 7)
element: for each x in G, there exists an unique: if xxe=xx%xe =x for every x in G, 3 Th'e set ¢

element x~! suchthatxxx 1=x"lxx=e. thene=e¢'.

mathematical objects that he is studying at the moment. When he thinks
he has found a proof, he starts carefully checking all his conclusions,
and he realizes that only a very small number of the properties of the
objects in question played any sort of role in the proof. He thus dis-
covers that he could use the same proof for other objects having only
the properties he needed to use. This demonstrates the simple un-
derlying idea of the axiomatic method: instead of announcing which
objects must be considered, it suffices to provide a list of properties
[...] to be used in the investigation. Then one expresses these proper-
ties as axioms. From then on, it's no longer important to explain what
objects are being studied. Instead, one can construct the proof so that
it is true for any objects satisfying the axioms. It's quite remarkable
that the systematic implementation of such a simple idea shook math-
ematics so thoroughly.”

For Bourbaki, the axiomatic method is inseparable from the study
of structures, the third key element of the group’s vision of mathe-
matics. What does Bourbaki mean by mathematical structures? As
L'architecture des mathématiques explains, one starts with a set “of
elements whose properties are not specified. Then one or several re-
lations among these elements are added [...], and postulates are added
that the given relation or relations must satisfy. These are the axioms
of the structure in mind. Making an axiomatic theory out of a given
structure is deducing logical consequences of the structure’s axioms
without using any other assumptions about the elements in question
(and, in particular, without using any assumptions about their ‘nature’).”
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Three Important Types of Structures

Let's illustrate the notion of structures with one of the most widespread
and important mathematical structures: the group. The axioms that
define groups are given in box 1. There are many concrete realizations
of this abstract entity. Here are three, suggested by L'architecture des
mathemdatiques:
|. The set of real numbers with the operaticn of ordinary
addition.

2. The set of integers 1, 2, 3, 4, 5, 6 equipped with multi-
plication modulo 7. (The result of multiplication of two in-
tegers m and n modulo 7 is the remainder upon dividing the
product mn by 7. For example, the result of 4 times 5 mod-
ulo 7 is 6, because 6 is the remainder when 20 is divided by
7.)

3. The set of translations of the Euclidean plane.

At the Chancay conference in
1936: Claude Chevalley (from
behind), Szolem Mandelbroijt,
Jean Delsarte, Jean Dieudonné,
and André Weil (standing).
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2. What Is a Ring? What Is an Ideal?

ring is a set whose elements can be added,
Asubtracted, and multiplied (but not
necessarily divided). More precisely, a ring is a
non-empty subset R equipped with an addition
law + and a multiplication law % such that

I. R is an abelian group with the
operation +. (The identity element for addition is
usuaily denoted by 0.)

2. The law x is associative and has an
identity element (usually denoted by 1); that is,
xx(y*xz)=(xxy)xzand 1 xx=xx1=x for
any x, y, and z in R.

3. The law * distributes over +; that is,
Xk(Y+2Z)=x*xy+xxz and x+y)xz=
X*zZ+y*xzforanyx,y, and z in R.

The ring R is called commutative when both
the addition and multiplication laws are
commutative. A familiar example of a
commutative ring is the set Z of integers,
equipped with the usual operations + and * of
addition and multiplication. Another example of
a commutative ring is the set of polynomials in
one variable with coefficients in the real numbers
(these are expressions of the form
ao+aix+axx%+---+apx", where n is a
positive integer called the degree of the

A=(51 az) B=(b1 bz)
by by

ayby + agb, )

agby + asb,

———

polynomial and aj,a»,as,...,an are given real
numbers called the coefficients), again equipped
with the usual laws of polynomial addition and
multiplication. An example of a non.
commutative ring is the set of 2x2 matrices with
real entries (these are tables of four numbers
arranged in two lines of two elements each),
which have many applications, including the
representation of linear transformations acting
on vector spaces. In this case, the addition and
multiplication laws are the usual laws of addition
and multiplication for matrices; see the diagram
below.

Given a ring R, now consider a subset I of R.
This subset I is a left ideal if the following
properties are satisfied:

1. I'is a subgroup of R with respect to
the addition law +.

2. ForanyainR and x in I, the product
a * x is an element of I,

The definition of a right ideal is analogous;
just replace a xx by xxa in property 2. For
example, the even numbers form an ideal (both
left and right) of the ring Z of integers, because
any multiple of an even number is even.

a;+by  a,+b
A+B=( T2 2)=B+A

a3+b3 ay+b,
byay + bsay
# AB

byay + byag
BA =
baa, + bgay

b3a1 + b4a3
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with a little high school math, it is not too hard to check that these
three structures indeed satisfy the group axioms. For the first exam-
ple, this is nearly obvious: any real x, y, and z satisfy
(x+y)+7=x+(y+2), the identity element is 0 since x +0 = 0 + x = x,
and the additive inverse of x is —x since x + (-x) = 0. For the second
example, the identity element is the integer 1 and the inverses of 1,
2,3,4, 5, and 6 are respectively 1, 4, 5, 2, 3, and 6. For the third ex-
ample, the identity element is the identity translation, which fixes every
point in the plane, and each translation has an inverse that reverses
the effect of that translation on the points of the plane.

Bourbaki differentiates three main types of structures. The struc-
tures involving a rule that associates any pair of elements to a third
element are called algebraic structures. These sort of structures include
groups, of course, as well as rings, ideals, fields, vector spaces, and so
forth. The second type of structure involves an order (see box 4),
which is a relation that orders, or compares, the elements of a set (al-
though not necessarily ali the elements). The structures of the third
type are topological structures, which provide an abstract mathemat-
ical formulation of the intuitive concepts of neighborhoods, limits,
and continuity. The next chapter discusses some structures of this type.

With the axiomatic method and these three main types of struc-
tures—algebraic structures, ordered structures, and topological struc-
tures—as guides, Bourbaki paints a picture of a mathematical universe
where the organizing principle is a hierarchy of structures progress-
ing from simple to complex and from general to specific. Bourbaki ex-
plains that “in the nucleus are the main types of structures [...], the
mother-structures, one could say. Each of these types already contains
quite a wide variety of objects, since one must differentiate the most
general structure, the one with the least axioms, from the ones obtained
by adding axioms, which each yield a crop of new results [...]. Beyond
this innermost nucleus are the structures that one could describe as
complex. These involve one or more mother-structures that aren't
merely juxtaposed [...] but combined organically by one or more ax-
ioms connecting them [...]. Finally, farther out are the actual theories,
where the elements of the sets in question, until now left undefined
within the general structures, gain individual characteristics. This is
where the classical mathematical theories are found.” According to Bour-
baki, individual theories of mathematics such as function theory, dif-
ferential geometry, algebraic geometry, and number theory have lost
their old autonomy to become “crossroads where the most general
Mathematical structures come together to act upon one another.”

Having presented this vision of mathematics, the author of L’ar-
chitecture des mathématiques emphasizes that it is merely a schematic

Pierre Cartier and Bernard
Teissier in la Messuguiére
(near Grasse) in July 1975.

Charles Ehresmann (1905-1979)
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A working seminar at the Institut
des Hautes Ftudes Scientifiques.
Grothendieck is presenting, and
the first row contains (from left
to right) Michel Demazure,
Francois Bruhat, Pierre Samuel,
and Jean Dieudonné (near the
window).

and idealized view, and thus that it “must be treated only as a very
rough approximation of the current state of mathematics.”

The unity of mathematics, the axiomatic method, and the study of
structures are not Bourbaki’s own inventions. Mathematicians have g.
ways wondered whether or not mathematics is a single, unified syp.
ject. For instance, the question arises in simply trying to understanq
the connections between algebra and geometry (for example, why can
a set of consecutive real numbers be identified with the points on 3
line segment?). The axiomatic method, pioneered by Euclid, entereq
modern mathematics at the end of the nineteenth century (with
Hilbert’s work, for example, and Richard Dedekind and Giuseppe
Peano’s axiomatization of integer arithmetic). As for the study of
structures, at least of algebraic structures, Bourbaki was strongly in-
fluenced by van der Waerden’s Moderne Algebra, which represented
German mathematics during the years 1900-1930.

Bourbaki’s role in these issues was to emphasize these three notions,
to connect them, to try to extend the concept of structure emerging
in the work of the German algebraists to all of mathematics. However,
the Bourbakian vision of mathematics is not a perfectly constructed
and coherent theory. Moreover, Bourbaki does not always follow its
own philosophy of mathematics in Eléments de mathématique.
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S avery 3. What Is a Field?

study of - A field is a set whose elements can be added, x*x~!=x"! xx=1). The zero element, which

have al. Asubtracted, multiplied, or divided has no inverse, is by definition the identity

ied sub- (expecting division by zero, which is not element for addition.

lerstand defined). That is, a set K -equipped with an Examples of fields are the set Q of rational

why can addition law + and a multiplication law * is a numbers (numbers of the form p/q, where p and

ntsona field if q are integers); the set C of complex numbers

entered 1. K is a ring under + and % and (the numbers of the form x+iy, where x and y !
ry (with ¥ ontains at least two elements. are real and i satisfies i> = —1); and the subfield
iuseppe % 2. Any nonzero element x of K has a of R containing real numbers of the form !
;tu?y ,ﬂf multiplicative inverse x™! (that is, x~! satisfies a+b+/3, where a and b are rational numbers. .
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One of the main illustrations of this weakness is Bourbaki's attitude
towards the axiomatization of set theory and, more globally, towards
questions about the foundations of mathematics. Obtaining a satis-
factory system of axioms for set theory, upon which the turn-of-the-
century mathematicians wished to build all of mathematics, proved
to be an arduous task that led logicians and mathematicians to much
research on the foundations of mathematics. Among other things,
they tried to prove that the mathematics resulting from these axioms
was coherent, that the axioms could never lead to any sort of contra-
diction. This program, for a large part initiated by Hilbert, led to re-
sults that were surprising and hard to swallow. This is particularly the
case of Kurt Godel’s proof that it is impossible to prove that a given
System of axioms gives rise to a coherent system of mathematics by
using only those axioms.

Faced with a crisis that was affecting mathematicians in the first
third of the twentieth century, Bourbaki decided to hide its head in
the sand and treat these metamathematical problems, so important
to logicians, as uninteresting to mathematicians. However, it is hard
to believe that the logical coherence of an axiomatic theory would be
unimportant to a mathematician who, like Bourbaki, believed so much
I the axiomatic method. Bourbaki’s somewhat schizophrenic atti-
tude—which is held by most mathematicians not working directly on
the foundations of their discipline—materializes in the group’s book

A
n ‘

Saunders Mac Lane (1909-2005)
was one of the founders of
category theory.
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4. What Is an Order?

he concept of an order generalizes common
tools for comparison like “greater than or
equal to” and “less than or equal to.” More
precisely, an order is a relation R on a set E that
satisfies the following three properties.
1. Reflexivity: For any x in E, xRX.
2. Transitivity: Forany x, ¥, and z in E, if
xRy and yRz, then xRz.
3. Antisymmetry: For any x and y in E, if
XRy and yRx, then x = y.

The most well-known example of an order is
the relation “greater than or equal to" on the set
of real numbers. To check this, it suffices to
check that the three order axioms are satisfied
when R is replaced by the symbol >. Another
example of an order is the relation of inclusion
defined on the subsets of a given set E. We say
that a set A is included in B if all the elements of
A are also elements of B; this is written as A C B.
It is simple to check that the relation C satisfies
the three order axioms; for example, if ACB

and B C A, then A and B must be the same set.
Unlike the first example, where any two real
numbers can be compared by the relation >
(such an order is called a total order), two sets A
and B cannot necessarily be compared by the
relation of inclusion. If A and B are disjoint or
share some elements but not others, then
neither ACB nor BCA is true (such an
inclusion is called a partial order). A third
example of an order is the relation of division
defined on the set of integers (an integer a
divides the integer b if b/a is an integer). This is
also a partial order.

on set theory in Eléments de mathématique. This book met severe crit-
icism, especially from logicians, for its narrow perspective and failure
to address fundamental questions (see chapter 9).

Categories vs. Bourbakian Structures

Although Bourbaki’s treatise contains numerous examples of structures,
it leaves the concept of structures somewhat vague. Van de Waerden'’s
book Moderne Algebra, which presented algebra as a hierarchy of
structures, hadn’t formalized this concept. “Van der Waerden didn’t
find it necessary to give an explicit explanation, be it formal or not, of
what ‘algebraic structures’ and the ‘structural study of algebra’ really
are,” Leo Corry, a historian at the University of Tel Aviv, explains in
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his book. ourbaki, on the other hand, does
provide o formalization of the concept of
structures in the fourth chapter of the book
on set theory, However, the following chap-
rers of the treatise do not make use of this
formalization—despite the fact that the trea-
tise's first part, consisting of the first six
pooks, was initially called “Fundamental
structures of analysis.” Corry’s analysis of
the concept of algebraic structure as it de-
veloped since the nineteenth century “sug-
gests that [Bourbaki's] Théorie des ensembles
[Theory of Sets], and in particular the con-
cept of structure it defines, are not essential
to the rest of Eléements. Tt is possible to read
and undcrstand every book of Bourbaki’s
treatise without having learned about the
concept of’ structures. In principle, Théorie
des ensemmbles could have been left out of the
treatise, since it has neither heuristic value
nor logical importance for any of the theo-
ries discussed in the treatise’s later volumes,
where the real importance of the treatise lies.” Also, while the trea-
tise's goal is to provide basic tools for mathematicians, “the concept
of structures seems forced and unnatural.” Pierre Cartier, a former mem-
ber of Bourbaki, agrees with this view, affirming in a study of struc-
turalism in mathematics that “our conclusion is final: Bourbaki did not
produce a mathematical theory of structures, and perhaps did not want
to do so.”

Today, no discussion of mathematical structures is complete with-
out a discussion of category theory. Introduced around 1942 by Samuel
Eilenberg (who would later become a member of Bourbaki) and Saun-
ders MacLane, category theory provides an abstract and general frame-
work for describing numerous mathematical situations and the con-
nections between them. Things become technical and abstract very
quickly, but we can give a rough description of what category theory
entails. \ category is given by a class of objects and, for every pair (A, B)
of objects, a set of correspondances (called morphisms) from A to B.
For example, in the category of sets the objects are sets and the mor-
phisms from A to B are all the possible functions defined from A to
B.In the category of groups, the objects are groups and the mor-
phisms from a group A to a group B are all the homomorphisms from
AtoB.A homomorphism f is a function preserving the structure of

Jean-Louis Koszul (born 1921)
during a Bourbaki conference.




84

BOURBAKI: A SECRET SOCIETY OF MATHEMATICIANS

the group operation; that is, a function f is a homomorphism if for a)
x and y in A, f(x * y) = f(x) o f(y), where % is the composition law of
the group A and o is the composition law of the group B.) In addition,
category theory studies the mapping between two categories, which
are called functors.

The language of categories and functors spread rapidly during the
sixties. Some Bourbaki members put it to great use, including Eilep-
berg of course, but also Charles Ehresmann and especially Alexandre
Grothendieck. Category theory, which is much more general than the
structures described by Bourbaki in Eléments de mathématique, could
have played an important part in the structural vision of mathemat-
ics, but Bourbaki did not update its Architecture des mathématiques.
More importantly, the group did not manage to use categories in its
treatise, despite the group’s numerous discussions and preliminary
drafts on the subject. One of the reasons for this is that the task
would have required a profound revision of the existing volumes. Ac-
cording to Pierre Cartier, “Bourbaki got away with talking about cate-
gories without really talking about them. If they were to redo the trea-
tise, they would have to start with category theory. But there are still
unresolved problems about reconciling category theory and set
theory.”

In her thesis on Bourbaki, Judith Friedman collected these remarks
from Claude Chevalley, one of the group’s founders, which relate to
the idea that Bourbaki has become mathematically more bourgeois over
the years: “From this point of view, category theory was more true to
the spirit of Bourbaki than their theory based on structures—it was
more structuralist! ...} In some sense, Bourbaki's rejection of categories
was one of the most significant points in the transformation of the
group'’s spirit. For the first time, something that people knew to be em-
inently Bourbakian was mostly rejected out of a desire to advance with-
out addressing [...] the starting point.” To try to rectify this, Cheval-
ley wrote a book on category theory in the 1960s. However, the book
was never published—the publishers, Hermann, lost the manuscript!

The fifties and sixties were the years of structuralism. The Bour-
bakian vision, which emphasized axioms and structures, was emulated
by mathematicians as well as authors (particularly the Oulipo move-
ment) and scientists in areas such as anthropology and psychology.
Many criticized Bourbaki's vision of the structure of mathematics,
and it is clear that their vision cannot encompass all the mathemati-
cal activity of today (see chapter 11). Nevertheless, this vision certainly
encompassed the mathematics of their time and brought some clar-
ity to the era in which it was conceived and expressed.
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The logician Kurt Gédel and the physicist
Albert Einstein at Princeton in 1950.
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