younde a felve erāples, bicaufe the ertradtion of thetr rootes, naie the moze aptlp bee watughte. Sny to as uoioe the tedioufe repetition of thete loogoes : is e" qualle to: 3 will fette as 3 Doe often in wosere bie, a parte of paralleles, 02 © $\mathbb{B e m o l v e}$ lines of ane lengthe, ti)us: $=-\cdots$, bicaufe noe.2. thynges, rain be moare equalle. sanduoio matke thefe nombers.

(A1) al-Khwārizmī writes: I have divided ten into two parts; I have multiplied the one by ten and the other by itself, and the products were the same. The first part of the sentence means that he is dealing with two numbers that add up to ten. Solve this problem, which indicates that al-Khwārizmī was comfortable dealing with irrational numbers.

Modern techniques would produce two solutions to this problem, but al-Khwārizmī would only have recognized one. Which one and why?
(A2) In Greek mathematics, some scholars (like Ptolemy, working in the +2 nd century in Alexandria) studied trigonometric functions, particularly in connection with problems in astronomy. They did not use the modern sine and cosine, though, but rather mainly a function called the chord, later adopted in India and written about in the Aryabhatiya.

The chord of an angle α, denoted $\operatorname{crd}(\alpha)$, is the distance between two points on a circle of radius R if the angle between them at the center of the circle is α.

Let R be fixed. Work out $\operatorname{crd}(\alpha)$ in terms of α, R and the modern sine function. Work out $R \sin (\alpha)$ in terms of $\operatorname{crd}(\alpha)$.
(A3) Give a geometrical proof that $a^{2}-b^{2}=(a-b)(a+b)$.
(B1) Using the notation $e^{i \theta}=\cos \theta+i \sin \theta$ and the usual algebra of complex numbers and exponentiation, derive the double-angle formulas and triple-angle formulas.

