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iembers developed to the point where the same digit | represented 60 as well. We dosot
know why the Babylonians decided to have one large unit represent 60 small »xiuts and
then adapt tiic.method for their numeration system. One conjecture is th2:"00 is evenly
divisible by many sinall integers. Therefore, fractional values of the “large” unit could easily
be expressed as integral values of the “small” unit. The Babyleditan base 60 place-value
system is still in use in our units:for angle and time measurzinent, units preserved over the
centuries in astronomical contexts anGtaday an irreplaceable part of world culture.

There is no record of the written numbez svstem of ancient India, but there is literary
evidence that numerical symbols did exist-Zc1s oniy.from about the third century B.C.E. that
examples of written numbers are avaiiable. Originally, w22 system was mixed. There was
a ciphered system similar to ths'nieratic with separate symbois-for the numbers 1 through
9 and 10 through 90. For<arger numbers, the system was a multiptieative one similar to
the Chinese. For ex-utiple, the symbol for 200 was a combination of the sywzhol for 2 and
that for 100, and the symbol for 70,000 combined the symbols for 70 and 1000. As:will be
discussein Chapter 6, it was in or near India that the modern base 10 place-value systew
devzioped, but not until about the seventh century C.E.

1 3 ARITHMETIC COMPUTATIONS

Once their system of writing numbers came into existence, all of the civilizations under
discussion devised rules for the basic arithmetic operations—addition, subtraction, multi-
plication, and division-——and as a consequence of the last operation, rules for writing and
operating with fractions. These rules may be considered as some of the earliest algorithms.

An algorithm is an ordered list of instructions designed to produce an answer to a
given type of problem. Ancient peoples produced algorithms of all sorts to handle many
different problems. In fact, ancient mathematics can be characterized as algorithmic in
nature, as opposed to the Greek mathematics, which emphasized theory. In most of the
available documents of ancient mathematics, the author describes a problem to be solved
and then proceeds to use an algorithm, either explicit or implicit, to obtain the solution. (
There is little concern in the documents as to how the algorithm was discovered, why it ?
works, or what its limitations are. Instead, we simply are shown many examples of the use
of the algorithm, often in increasingly complex situations. Nevertheless, in our discussion ]
of these algorithms, we will describe the possible origins and justifications of each one and |
will present the possible answers that the Babylonian, Chinese, or Egyptian scribes gave to |
their students who asked the eternal question “why?” “

In the Egyptian hieroglyphic grouping system, addition is simple enough: Combine the ‘
units, then the tens, then the hundreds, and so on. Whenever a group of ten of one type of

symbol appears, replace it by one of the next. Hence, to add 783 and 275, put |||RRHQ9999999 1

and W nnmnmmn% together to get lmmﬂﬂﬂmﬂnﬂnﬂmﬂnﬂn 99%99999. Since there are fifteen Ms, replace

ten of them by one 9. This then gives ten of the latter. Replace these by one ‘% The final

answer is Hnnmﬂnmvg, or 1058. Suttraction is done similarly. In this case, of course, whenever
“borrowing” is needed, one of the symbols would be converted to ten of the next lower
symbol.
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Such a simple algorithm for addition and subtraction is not possible in the hieratic
system. For these operations, the mathematical papyri do not provide much evidence; the
answers to addition and subtraction problems are merely written down. Most probably, the
scribes had addition tables. At some point these would have existed in written form, but
a competent scribe would, of course, have memorized them. The scribes presumably used
the addition tables in reverse for subtraction problems.

The Egyptian algorithm for multiplication was based on a continual doubling process.
To multiply two numbers a and b, the scribe would first write down the pair 1, b. He would
then double each number in the pair repeatedly, until the next doubling would cause the
first element of the pair to exceed a. Then, having determined the powers of 2 that add to
a, the scribe would add the corresponding multiples of b to get the answer. For example, to
multiply 12 by 13 the scribe would set down the following lines:

12
24
48
96

0 N o=

At this point, he would notice that the next doubling would produce 16 in the first column,
which is larger than 13. He would then check off those multipliers that added to 13, namely
1, 4, and 8, and add the corresponding numbers in the other column. The result would be
written as: Totals 13 156.

As before, there is no record of how the scribe did the doubling. The answers are simply
written down. Perhaps the scribe had memorized an extensive 2 times table. In fact, there
is some evidence that doubling was a standard method of computation in areas of Africa
to the south of Egypt, so it is likely that the Egyptian scribes learned from their southern
colleagues.® In addition, the scribes were somehow aware that every positive integer could
be uniquely expressed as the sum of powers of 2. That fact provides the justification
for the procedure. How was it discovered? Our best guess is that it was discovered by
experimentation and then passed down as tradition.

Because division is the inverse of multiplication, a problem such as 156 + 12 would
be stated as “multiply 12 so as to get 156.” The scribe would then write down the same
lines listed before. This time, however, he would check off the lines having the numbers
in the right-hand column that sum to 156; in this case, 12, 48, and 96. Then the sum of
the corresponding numbers on the left, namely 1, 4, and 8, would give the answer 13. Of
course, division does not always “come out even.” When it did not, the Egyptians used
fractions.

The kind of fractions that the Egyptians used were unit fractions, or “parts” (fractions
with numerator 1), with the single exception of 2/3, perhaps because these fractions are
the most “natural.” The fraction 1/n (the nth part) is represented in hieroglyphics by the
symbol for the integer n with the symbol = above. In the hieratic a dot is used instead.

<>

Thus 1/7 is denoted in hieroglyphics by 7 and in the hieratic by Z'. The single exception,
2/3, had a special symbol: ¥ in hieroglyphics and ¥ in hieratic. (The former symbol is
indicative of the reciprocal of 1 1 /_2.) In the remainder of this text, however, the notation 7

will be used to represent 1/n and 3 to represent 2/3.
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Because fractions show up as the result of divisions that do not come out evenly, we
need to be able to deal with fractions other than unit fractions. It was in this connection that
the most intricate of the Egyptian mathematical techniques developed, the representation
of any fraction in terms of unit fractions. The Egyptians did not put the question this way,
however. Where we would use a nonunit fraction, they would simply write a sum of unit
fractions. For example, problem 3 of the Rhind Mathematical Papyrus asks how to divide
6 loaves among 10 men. The answer is given that each man gets 2 10 loaves (that is,
1/2 + 1/10). The scribe checks this by multiplying this value by 10. We may regard the
scribe’s answer as more cumbersome than our answer of 3/5, but in some sense the actual
division is easier to accomplish this way. If we divide five of the loaves in half and the |
sixth one in tenths, and then give each man one-half plus one-tenth, it is then clear to all
concerned that everyone has the same portion of bread. Cumbersome or not, this Egyptian
unit-fraction method was used throughout the Mediterranean basin for over 2000 years.
In multiplying whole numbers, the important step is the doubling step. Likewise in
multiplying fractions, the scribe had to be able to express the double of any unit fraction.
For example, in the preceding problem, the check of the solution is written as follows: |

1 210
2 15
4 2315
'8 431030
10 6

How are these doubles formed? Tc double 2 10 is easy: Because each denominator is even, it
is merely halved. In the next line, however, 5 must be doubled. To perform calculations like
this, the scribe had to use a table to get the answer 3 15 (that is, 2 - 1/5 = 1/3 + 1/15).
In fact, the first section of the Rhind Papyrus is a table of the division of 2 by every
odd integer from 3 to 101 (Fig. 1.7), and the Egyptian scribes realized that the result of
multiplying 7 by 2 is the same as that of dividing 2 by n. Although it is not known how
the division table was constructed, several scholarly accounts present hypotheses for the
scribes’ methods.” In any case, the solution of problem 3 depends on using that table twice,
first as already indicated and second, in the next step, where the double of 15 is given as
1030 (or 2+ 1/15 = 1/10 + 1/30). The final step in this problem involves the addition

of 15 to 4 3 10 30, and here the scribe just gave the answer. Again, the conjecture is that
for such addition problems an extensive table existed. The Egyptian Mathematical Leather
Roll, which dates from about 1600 B.C.E., contains a short version of such an addition table.
There are also extant several other tables for dealing with unit fractions and a multiplication ,
table for the special fraction 2/3. It thus appears that the arithmetic algorithms used by the i
Egyptian scribes involved extensive knowledge of basic tables for addition, subtraction, and '
doubling and then a definite procedure for reducing multiplication and division problems
into steps, each of which could be performed using the tables.

Often in dealing with division, the scribes replaced the doubling procedure by halving.
For example, in calculating 2 + 7, the first steps are:

7_

32
124

AN =




FIGURE 1.7

Transcription and
hieroglyphic translation of
2+3,2+5and2+7
from the Rhind
Mathematical Papyrus.
(Source: The Rhind
Mathematical Papyrus,
N.CTM)
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2 DIVIDED BY 3, 5, AND 7
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To get 2 as a total in the right-hand column requires the addition of 4 to 1 2 4 in the third
line. Thus the scribe needed to determine by what 7 should be multiplied to get 4. To do
this, he inverted the known result that 4 X 7 = 28 to get 1/28 of 7 is 1 /4. Then he added
the line 28 4 to his calculation and added the last two lines together to getTotal: 428 2,

or2+7 =428

Problem 21 of the Rhind Papyrus presents a different type of calculation: Complete

315t01.In other words, we need to determine what must be added to 2 /3+1/15t0get 1.
The scribe notes that 2/3 of 15is 10 and 1/15 of 15 is 1, for a total of 11. Thus he needs
to “multiply 15 to get 4. The steps are set down as follows:

1 15
10 12
5 3/
15 g

15 4

(]




12 Chapter 1  Ancient Mathematics

Here the scribe doubles from the second line to the third, but, since he realized that 1 is
1/3 of 3, he took thirds to get from the third line to the fourth. The answer to the original
problem is then 5 15.

As an example of other modifications that the scribes made to their basic procedure,
consider problem 69 of the Rhind Papyrus, which includes the division of 80 by 3 2 and its
subsequent check:

1 32 1 223721
10 35 V2 4534142842
‘20 70 2 1131442
\2 7 32 80
3 23
21 6
\7 Z

23721 80

In the second line the scribe has taken advantage of the decimal nature of his notation
to get the product of 3 2 by 10. In the fifth line he has used the 2/3 multiplication table
mentioned earlier. The scribe then realized that since the numbers in the second column
of the third through the fifth lines added to 79 3, he needed to add 2 and 6 in that column
to get 80. Thus, because 6 X 32 = 21 and 2 X 32 = 7, it follows that 21 X 32 = 6 and
7 %X 32 = 2, as indicated in the sixth and seventh lines. The check shows several uses of
the table of division by 2 as well as great facility in addition.

That the Babylonians used tables in the process of performing arithmetic computa-
tions is proved by extensive direct evidence. Many of the preserved tablets are in fact ‘
multiplication tables. No addition tables have ever been found, however. Because over 200
Babylonian table texts have been analyzed, we may assume that they did not exist and that
the scribes knew their addition procedures by heart and simply wrote down the answers
when needed. On the other hand, there do exist many examples of “scratch tablets” on
which a scribe has performed various calculations in the process of solving a problem. In
any case, since the Babylonian number system was a place-value system, the actual algo-
rithms for addition and subtraction, including carrying and borrowing, may well have been
similar to modern ones. For example, to add 23,37 (= 1417) to 41,32 (= 2492), one first
adds 37 and 32 to get 1,09 (= 69). One writes down 09 and carries 1 to the next column.

Then 23 + 41 + 1 = 1,05 (= 65), and the final result is 1,05,09 (= 3909).

Because the place-value system was based on 60, the multiplication tables were ex- 5
tensive. Any given one listed the multiples of a particular number, say 9, from 1 X 9 to
20 X 9 and then gave 30 X 9, 40 X 9, and 50 X 9 (Fig. 1.8). To obtain the product 34 X 9,
the scribe simply added the two results 30 X 9 = 4,30 (= 270)and 4 X 9 = 36 to get 5,06
(= 306). For multiplication of two- or three-digit sexagesimal numbers, several such tables
were needed. The exact algorithm the Babylonians used for such multiplications—where
the partial products are written and how the final result is obtained—-is not known, but it |
may well have been similar to our own. |

One might think that for a complete system of tables, the Babylonians would have
one for each integer from 2 to 59. Such was not the case, however. In fact, although there
are no tables for 11, 13, or 17, for example, there are tables for 1,15, 3,45, and 44,26,40.




FIGURE 1.8

A Babylonian
multiplication table for 9
(Department of
Archaeology, University
of Pennsylvania).
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Although we do not know precisely why the Babylonians made these choices, we do know
that, with the single exception of 7, all the multiplication tables found so far are for regular
sexagesimal numbers—that is, numbers whose reciprocal is a terminating sexagesimal
fraction. The Babylonians treated all fractions as sexagesimal fractions, analogous to our
use of decimal fractions. Namely, the first place after the “sexagesimal point,” denoted by
", represents 60ths, the next place 3600ths, and so on. Thus, the reciprocal of 48 is the
sexagesimal fraction 0;1,15, which represents 1/60 + 15/602, while the reciprocal of 1,21
(= 81) is 0;0,44,26,40, or 44/60% + 26/60° + 40/60%. Because the Babylonians did not
indicate an initial O or the sexagesimal point, this last number would just be written as
44,26,40. As noted, there exist multiplication tables for this regular number. Such tables
provide no indication of the absolute size of the number, nor is one necessary. When the
Babylonians used the table they, of course, realized that the eventual placement of the
sexagesimal point depended on the absolute size of the numbers involved, so the placement
was finally determined by context.

Besides multiplication tables, the Babylonians also used extensive tables of reciprocals; |

part of one is reproduced here. A table of reciprocals is a list of pairs of numbers whose
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product is 1 (where the 1 can represent any power of 60). Like the multiplication tables,
these tables only contained regular sexagesimal numbers.

2 30 16 345 48 115
3 20 25 2,24 1,04 56,15
10 6 40 1,30 1,21 44,26,40

The reciprocal tables were used in conjunction with the multiplication tables to do
division. Thus the multiplication table for 1,30 (= 90) served not only to give multiples
of that number, but also, since 40 is the reciprocal of 1,30, to do divisions by 40. In other
words, the Babylonians considered the problem 50 + 40 to be equivalent to 50 X 1 /40, or,
in sexagesimal notation, to 50 X 0;1,30. The multiplication table for 1,30, part of which
appears here, then gives 1,15 (or 1,15,00) as the product. The appropriate placement of the
sexagesimal point gives 1;15(= 1 1/4) as the correct answer to the division problem. )

1 1,30 10 15 30 45
2 3 11 16,30 40 1
3 430 12 18 50 L,15

In ancient China, arithmetic calculations were made on the counting board. In general,
whenever fractions were needed, they were expressed as common fractions. The Chinese
actually used our modern rules of calculation with fractions, including our device of
common denominators. There is some evidence, however, of the early use of decimal
fractions simply as additional columns on the counting board, particularly in dealing with
measures of length and weight. A fully developed decimal fraction system was not in place
until much later.

1
14 LINEAR EQUATIONS

Most of the mathematical sources from ancient times are concerned with the soluiion
of problems, to which various mathematical techniques are applied. Our study-of these
pichlems begins with several methods for solving what are today known as li=car equations.
Of coursz. one must always remember that none of the ancient peozies had any of the
symbolism foi-operations or unknowns that we use today. Nevertieless, the scribes were
able to solve probleias using purely verbal techniques.

The Egyptian papyri pzesent several different procedures for dealing with linear equa-
tions. For example, the Moscow~Papyrus uses thz current technique to find the number
such that if it is taken 1 1/2 times ana'then 445 added, the sum is 10. In modern notation, ]
the equation is simply (1 1/2)x + 4 =.1J. The scribe proceeds the same way we would
today: He first subtracts 4 from 1070 get 6, then'wnltiplies 6 by 2/3 (the reciprocal of
1 1/2) to get 4 as the solutiow. Similarly, problem 31 oithe Rhind Papyrus asks to find
a quantity such that the sum of itself, its 2/3, its 1/2, and its"1,/7 becomes 33—that is,
to find x such that =™+ (2/3)x + (1/2)x + (1/7)x = 33. The probivm is not conceptu-
ally difficult, butit is arithmetically challenging. It and the three following pinblems were ‘
probably zut in to demonstrate methods of division, for the scribe solved the provlam by
dividzag 33by 1 +2/3 + 1/2 + 1/7. His answer—and this should be checked—is writtex



Moon Duchin

Moon Duchin


