References

Key References

The following are some particularly critical references that form the core justification behind our project. A full list of our references can be found at the bottom of this page.

Fiala, N. (2008). Meeting the demand: An estimation of potential future greenhouse gas emissions from meat production. Ecological Economics, 67(3), 412-419. doi:https://doi.org/10.1016/j.ecolecon.2007.12.021
This paper gives the large-scale need for our project, that conventional meat production is extremely damaging to the planet and will only become more so over time.

Stephens, N., Di Silvio, L., Dunsford, I., Ellis, M., Glencross, A., & Sexton, A. (2018). Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends in Food Science & Technology, 78, 155-166.doi:https://doi.org/10.1016/j.tifs.2018.04.010
This paper gives the small-scale need for our project, that although cellular agriculture could one day be a promising alternative to conventional meat, it currently struggles with scale-up and cost.

Fukuda, T., Takahashi, K., Takase, S., Orimoto, A., Eitsuka, T., Nakagawa, K., & Kiyono, T. (2020). Human Derived Immortalized Dermal Papilla Cells With a Constant Expression of Testosterone Receptor. Frontiers in cell and developmental biology, 8, 157. https://doi-org.ezproxy.library.tufts.edu/10.3389/fcell.2020.00157
This paper provides critical justification for our immortalization method, showing its successful use in another cell type.

Pantic, B., Borgia, D., Giunco, S., Malena, A., Kiyono, T., Salvatori, S., De Rossi, A., Giardina, E., Sangiuolo, F., Pegoraro, E., Vergani, L., & Botta, A. (2016). Reliable and versatile immortal muscle cell models from healthy and myotonic dystrophy type 1 primary human myoblasts. Experimental cell research, 342(1), 39–51. https://doi-org.ezproxy.library.tufts.edu/10.1016/j.yexcr.2016.02.013 
Further justification for our method, showing its successful use in yet another cell type.

All References

Bernardes de Jesus, B., & Blasco, M. A. (2013). Telomerase at the intersection of cancer and aging. Trends in genetics : TIG, 29(9), 513–520. https://doi-org.ezproxy.library.tufts.edu/10.1016/j.tig.2013.06.007

Fiala, N. (2008). Meeting the demand: An estimation of potential future greenhouse gas emissions from meat production. Ecological Economics, 67(3), 412-419. doi:https://doi.org/10.1016/j.ecolecon.2007.12.021

Fukuda, T., Takahashi, K., Takase, S., Orimoto, A., Eitsuka, T., Nakagawa, K., & Kiyono, T. (2020). Human Derived Immortalized Dermal Papilla Cells With a Constant Expression of Testosterone Receptor. Frontiers in cell and developmental biology, 8, 157. https://doi-org.ezproxy.library.tufts.edu/10.3389/fcell.2020.00157

González Castro, N., Bjelic, J., Malhotra, G., Huang, C., & Alsaffar, S. H. (2021). Comparison of the Feasibility, Efficiency, and Safety of Genome Editing Technologies. International journal of molecular sciences, 22(19), 10355. https://doi-org.ezproxy.library.tufts.edu/10.3390/ijms221910355

Key, T. J., Appleby, P. N., Bradbury, K. E., Sweeting, M., Wood, A., Johansson, I., Kühn, T., Steur, M., Weiderpass, E., Wennberg, M., Lund Würtz, A. M., Agudo, A., Andersson, J., Arriola, L., Boeing, H., Boer, J., Bonnet, F., Boutron-Ruault, M. C., Cross, A. J., Ericson, U., … Danesh, J. (2019). Consumption of Meat, Fish, Dairy Products, and Eggs and Risk of Ischemic Heart Disease. Circulation, 139(25), 2835–2845. https://doi-org.ezproxy.library.tufts.edu/10.1161/CIRCULATIONAHA.118.038813

Mátés, L., Chuah, M. K., Belay, E., Jerchow, B., Manoj, N., Acosta-Sanchez, A., Grzela, D. P., Schmitt, A., Becker, K., Matrai, J., Ma, L., Samara-Kuko, E., Gysemans, C., Pryputniewicz, D., Miskey, C., Fletcher, B., VandenDriessche, T., Ivics, Z., & Izsvák, Z. (2009). Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nature genetics, 41(6), 753–761. https://doi-org.ezproxy.library.tufts.edu/10.1038/ng.343

McHugh, D., & Gil, J. (2018). Senescence and aging: Causes, consequences, and therapeutic avenues. The Journal of cell biology, 217(1), 65–77. https://doi.org/10.1083/jcb.201708092

Pantic, B., Borgia, D., Giunco, S., Malena, A., Kiyono, T., Salvatori, S., De Rossi, A., Giardina, E., Sangiuolo, F., Pegoraro, E., Vergani, L., & Botta, A. (2016). Reliable and versatile immortal muscle cell models from healthy and myotonic dystrophy type 1 primary human myoblasts. Experimental cell research, 342(1), 39–51. https://doi-org.ezproxy.library.tufts.edu/10.1016/j.yexcr.2016.02.013 

​​Post, M. J. (2012). Cultured meat from stem cells: Challenges and prospects. Meat Science, 92(3), 297-301. doi:https://doi.org/10.1016/j.meatsci.2012.04.008

Post, M. J., Levenberg, S., Kaplan, D. L., Genovese, N., Fu, J., Bryant, C. J., . . . Moutsatsou, P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1(7), 403-415. doi:10.1038/s43016-020-0112-z

Ruas, M., Gregory, F., Jones, R., Poolman, R., Starborg, M., Rowe, J., Brookes, S., & Peters, G. (2007). CDK4 and CDK6 delay senescence by kinase-dependent and p16INK4a-independent mechanisms. Molecular and cellular biology, 27(12), 4273–4282. https://doi.org/10.1128/MCB.02286-06 

Shay, J.W., Wright, W.E. Telomeres and telomerase: three decades of progress. Nat Rev Genet 20, 299–309 (2019). https://doi-org.ezproxy.library.tufts.edu/10.1038/s41576-019-0099-1

Stephens, N., Di Silvio, L., Dunsford, I., Ellis, M., Glencross, A., & Sexton, A. (2018). Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture. Trends in Food Science & Technology, 78, 155-166. doi:https://doi.org/10.1016/j.tifs.2018.04.010

Tong, T., Appleby, P. N., Bradbury, K. E., Perez-Cornago, A., Travis, R. C., Clarke, R., & Key, T. J. (2019). Risks of ischaemic heart disease and stroke in meat eaters, fish eaters, and vegetarians over 18 years of follow-up: results from the prospective EPIC-Oxford study. BMJ (Clinical research ed.), 366, l4897. https://doi-org.ezproxy.library.tufts.edu/10.1136/bmj.l4897

Turan, S., Galla, M., Ernst, E., Qiao, J., Voelkel, C., Schiedlmeier, B., Zehe, C., & Bode, J. (2011). Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. Journal of molecular biology, 407(2), 193–221. https://doi.org/10.1016/j.jmb.2011.01.004 

Turan, S., Zehe, C., Kuehle, J., Qiao, J., & Bode, J. (2013). Recombinase-mediated cassette exchange (RMCE) – a rapidly-expanding toolbox for targeted genomic modifications. Gene, 515(1), 1–27. https://doi-org.ezproxy.library.tufts.edu/10.1016/j.gene.2012.11.016

Yuan, M., Zhang, J., Gao, Y., Yuan, Z., Zhu, Z., Wei, Y., Wu, T., Han, J., & Zhang, Y. (2021). HMEJ-based safe-harbor genome editing enables efficient generation of cattle with increased resistance to tuberculosis. Journal of Biological Chemistry, 296, 100497. https://doi.org/10.1016/j.jbc.2021.100497 

Comments are closed.