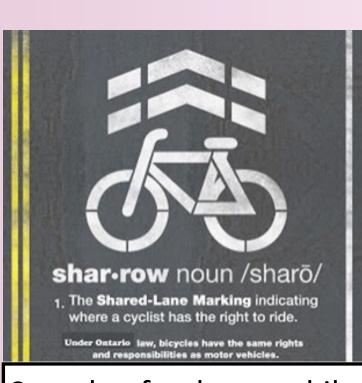
Analyzing Traffic Scenarios for Visual Attention Habits and Distractions


Introduction

- Visual attention can be defined as "... the mechanism by which one selects or orients towards objects, features or locations for further processing action." (Belyusar et al. 2015) . SROI > 50%
- . Visual attention uses in traffic scenarios:
- Outside distractions reduce pedestrian visibility (Habibovic 2012)

Visual sequence Heat map Regions of Interest (ROI)

- Frequent exposure reduces visibility (Arexis 2017)
- . Advertisements (billboards) cause high distraction (Belyusar 2015)
- . Previous visual analysis of bicycle lanes has indicated sharrows as the preferred design, but in Cambridge this design is rare

Sample of a sharrow bike lane design from a blog for bicyclists in Burling-

. Research Goals

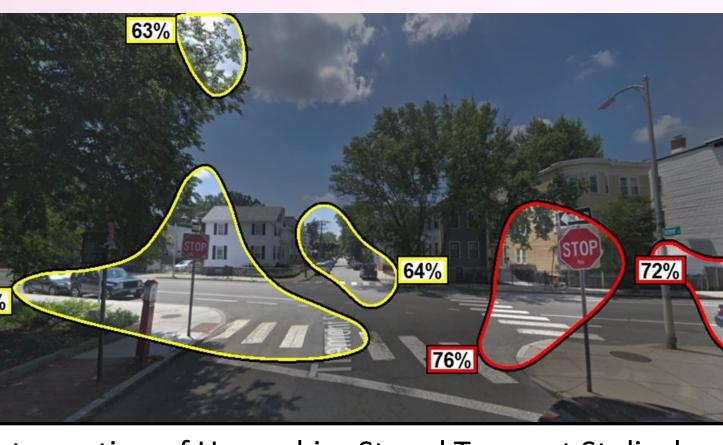
- . Using more universally applicable ton, Ontario methods for visual attention (eliminating driver bias)
- Expanding the knowledge and uses of VAS
- . Improving traffic structures and driver and pedestr ty in Cambridge
- Eliminate the sample size issue

Methodology

- . Cambridge Police Department Crash data:
- Originally contained 6,527 data entries spanning 1/1/2015 -3/30/2019
- removed irrelevant fields and controlled for externalities
- refined to 19 high risk intersections
- . 70 Images collected from Google maps and analyzed in VAS

Rachel Herman

Results


Tar	ı sa	fe-
lal	1 Sa	16-

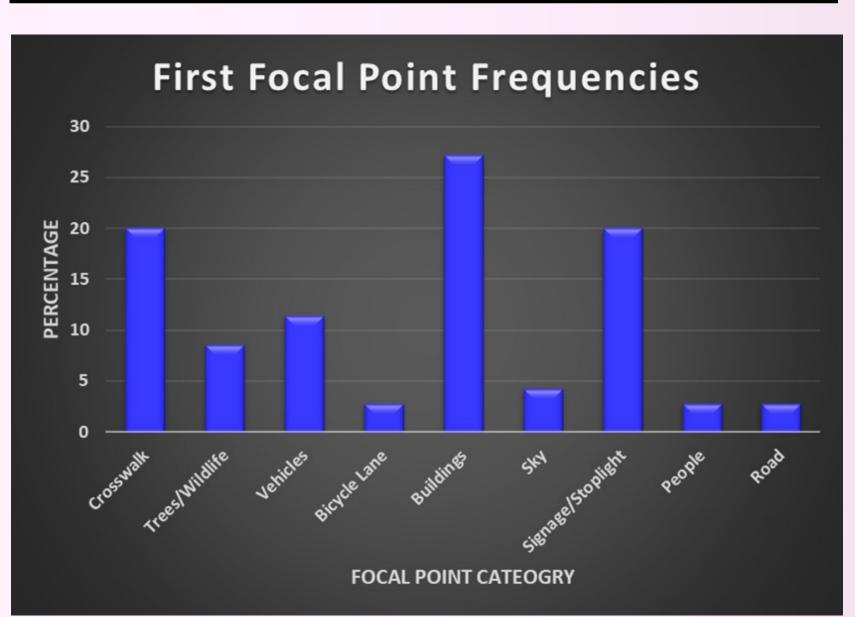
• High Interest Zones (**HIZs**):

- . Most frequent categories: Signage/stoplight (54.29%)Buildings (52.86%)

Intersection of Hampshire St and Tremont St displaying the typical features captured by VAS at traffic intersections

- **. Bicycle Lanes:**
- meaning 77.78% of

bicycle lanes were not capturing any focus . Solid green and white dashed lanes were common with low


visibility in agreement with previous research

. Visual Sequence **Fixations:**

- . Most frequent categories for first fixation: Buildings (27.14%) Crosswalks (20%) Signage/stoplights (20%)
- Consistency across all four fixations

Intersection of Cambridge St and Cardinal Madieras Ave displaying an uncaptured bike lane

. Very low visibility was observed, with first fixation frequency of only 2.86% . Bicycle lanes appeared in 18 images but were only fixations of any degree in 4,

Discussion & Conclusion

- . Signage and stoplights were the most frequently occurring HIZs
- . Aligns with VAS's known preference for advertisements, flags, and other types of stand alone lights and signs
- Signage and stoplights hovered around only 20% first fixations
- . It is possible that the signs may capture broad and brief visual attention while the information they present may not be fully absorbed (Arexis et al)
- . Crosswalks had good visibility
- . Ongoing plans for bike lane projects should be reconsidered for increased visibility and safety, potentially add signage for turns (Warner et al. 2017)
- Buildings captured attention in the same way previously seen in architectural study, thus data supports existing theories on architectural uses

References

Arexis, Mahé, François Maquestiaux, Nicholas Gaspelin, Eric Ruthruff, and André Didierjean. 2017. "Attentional Capture in Driving Displays." British Journal of Psychology 108 (2): 259-75. https://doi.org/10.1111/bjop.12197. Ba, Yutao, Wei Zhang, Bryan Reimer, Yan Yang, and Gavriel Salvendy. 2015. "The Effect of Communicational Signals on Drivers' Subjective Appraisal and Visual At-tention during Interactive Driving Scenarios." *Behaviour & Information Technology* 34 (11): 1107–18. https://doi.org/10.1080/0144929X.2015.1056547. Belyusar, Daniel, Bryan Reimer, Bruce Mehler, and Joseph F. Coughlin. 2015. "A Field Study on the Effects of Digital Billboards on Glance Behavior during Highway Driving | Elsevier Enhanced Reader." 2015. https://doi.org/10.1016/j.aap.2015.12.014. Caird, J.K., S. Milloy, A. Ohlhauser, M. Jacobson, M. Skene, and J. Morrall. 2008. "Evaluation of Four Bicycle Lane Treatments Using Driving Simulation: Compre-hension and Driving Performance Results." Whistler, British Columbia: Annual Conference of Canadian Road Safety Professionals. Gehl, Jan. 2010. Cities for People. Washington: Island Press.

Habibovic, Azra, Emma Tivesten, Nobuyuki Uchida, Jonas Bärgman, and Mikael Ljung Aust. 2012. 'Driver Behavior in Car-to-Pedestrian Incidents: An Application of the Driving Reliability and Error Analysis Method (DREAM) | Elsevier Enhanced Reader.' 2012. https://doi.org/10.1016/j.aap.2012.05.034. Hollander, Justin, Ann Sussman, Hanna Carr, Peter Lowitt, and Neil Angus. n.d. "Seeing the 'Unseen' in Devens, MA: A Biometric Pilot-Study to Better Understand How 'Unconscious' Behaviors Govern Our Experience in the Built Environment." Tufts University. Most, Steven B., and Robert S. Astur. 2007. "Feature-Based Attentional Set as a Cause of Traffic Accidents." Visual Cognition 15 (2): 125-32. RGenie. 2012. "The Sharrows Are Coming, the Sharrows Are Coming." I Bike Burlington (blog). 2012. http://ibikeburlington.blogspot.com/2012/09/the-sharrows-arecoming-sharrows-are.html.

Sussman, Ann, and Justin Hollander. 2015. Cognitive Architecture: Designing for How We Respond to the Built Environmen. Vol. 1. New York: Routledge. "Visual Attention Software | 3M United States." n.d. Accessed February 17, 2019. https://www.3m.com/3M/en_US/visual-attention-software-us/. Wallace, Brendan. 2003. "Driver Distraction by Advertising: Genuine Risk or Urban Myth?" Municipal Engineer 156 (3): 185-90. Warner, Jennifer, David Hurwitz, Christopher M. Monsere, and Kayla Fleskes. 2017. "A Simulator-Based Analysis of Engineering Treatments for Right-Hook Bicycle Crashes at Signalized Intersections | Elsevier Enhanced Reader." 2017. https://doi.org/10.1016/j.aap.2017.04.021.

Acknowledgements

- Adam Shulman & Cambridge Transportation Department
- . Justin Hollander & UEP Department
- Summer Scholars Program
- . Jed Fowler & Carie Fowler Antonelli

