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Abstract

Background
Ranking problems are very practical and ubiquitous in our daily life. The idea of 
rankings or ratings exists in every football championship season or every customized 
Netflix movie recommendation. 
In mathematics, solving ranking problems is a direct application of least squares 
regressions on graphs. This idea is best summarized and innovated by Jiang et al, 
who created a systematic approach to solve statistical ranking problems called 
HodgeRank.
Historical Methods
The main idea is the application of Hodge decomposition, which gives residue that 
contains information on the ranking of the subjects. Researchers have been active in 
this field to explore algorithms to solve the HodgeRank problems numerically and 
more efficiently. In a recent paper of Colley et al, they show the effectiveness of 
unsmoothed aggregation algebraic multigrid (UA-AMG) when it comes to solving 
graph-based least squares. Other iterative methods such as Successive Subspace 
Correction (SSC) also demonstrate good efficiency when solving least squares 
problems. 
New Algorithm and Comparison
In this paper, we develop an algorithm that aims to quickly update the subjects’ 
ranking online. This algorithm is based on UA-AMG with a faster convergence rate. In 
reality, one may find its application in online agencies such as movie ratings. At the 
end of the paper, we provide experiments testing against other iterative methods to 
demonstrate the fast convergence rate of our algorithm when solving large-graph-
based least squares problems.

• HodgeRank Theory: The most important mathematical foundation of my research 
is the HodgeRank theory

•

Where is the incidence matrix, f is the edge flow, W is the weight matrix, 
and r is our desired ranking.

Key Concept

Suppose we have 4 movies screening in Somerville Theatre, Get Out, Roma, COCO, 
and Hamilton. My goal is to figure out which one is the best according to popularity 
and ratings.
Now my housemates and I went to those and rated each on a 1~10 scale, but not 
everyone watched all the movies.

In order to figure out the ranking, we need to transfer the information onto a graph

Movie Ranking Simulation

Movie/voters Taoli Thomas Andrew James

Get out (G) 8 5 5 7

Roma (R) 10 4 7

Coco (C) 6 9 10

Hamilton (H) 6 5 10

•V: a set of vertices that symbolizes the objects being rated
•E: a set of edges connecting the vertices
•w: a set of weights that tells the “importance” of each edge

By assembling all the subgraphs together, we acquire the weights of each edge

Edge flow f can be understood as the pairwise comparison between the average rating of each movie.
It is defined as

where is voter v’s rating of movie i.

Now assemble everything according to the HodgeRank theory,

We have

And using an iterative method called AMG, we get that

Which means that Coco ranks 1st, Hamilton ranks 2nd, Roma 3rd, and Get Out comes last

Movie Ranking Simulation

Question: Now we know how to calculate the ranking given a fixed set of data, but in real world the data is constantly 
changing, so how can we efficiently update the rankings in a timely manner? 

Online Ranking Update

Method 1: do the above step again from scratch
However, we know that the more data needs processing, the slower it would become. It would be easy to recalculate 
the ranking of only 4 movies, but it would be incredibly slow if there were 40000 movies with millions of ratings. 

Method 2:  find a formula that explains the relationship between the old ranking        and the new ranking 
suppose we have 40000 movies in the database, but there would probably only be 20 ratings updated in the next 
hour. Therefore, we only need to focus on the change of a few edges in the graph G. The computational complexity 
would therefore be largely reduced.

Suppose      ,      ,     , and    are known, and we received a new rating of a movie. Then we have the change below, and 
the goal is to calculate the new ranking

Notice               , where       corresponds to the weights that remain the same, and       corresponds to the changes. The
same goes for              , and               .

With some algebra, we found that
Before update 

After update

Where L is the famous graph laplace matrix in mathematics, and b is a vector. 
Using      ,         , and the fact that                                   , and                            , we found the following formula with some 
algebra

Where   is the Moore–Penrose inverse (pseudoinverse)

To expand the pseudoinverse, we consulted 
Generalized Inversion of Modified Matrices by Carl 
Meyer. And here’s the final formula that 
connects and 

However, notice we have quite a few                 in this 
formula. This is may be problematic in that this term 
still makes the computational complexity high due to 
the fact that inverting a matrix is very expensive. 
Therefore, it is imperative to find an approximation to            

Luckily, the vector        has a very special structure. It 
has only two nonzero element 1 & -1, i.e.   

This property makes the product                very sparse 
(have many 0’s),  hence faster to compute.

Currently, we are working on using the idea of effective 
resistance to find a local approximation (at nonzeros
points) of              . Once this step is done, we are very 
close to completion.

Online Ranking Update

Future Steps

For the next few weeks, we will be working on 
approximating the term              and test our formula in 
MATLAB. 

For the rest of the summer and this coming fall, we will 
be working on writing the algorithm based on our 
theoretical foundation and test its performance with 
real world dataset. 

Reference

Jiang, Xiaoye, Lek-Heng Lim, Yuan Yao, and Yinyu Ye. 
"Statistical ranking and combinatorial
Hodge theory." Mathematical Programming 127, no. 1 
(2011): 203-244.

Colley, Charles, Junyuan Lin, Xiaozhe Hu, and Shuchin
Aeron. "Algebraic multigrid for least
squares problems on graphs with applications to 
hodgerank." In 2017 IEEE International
Parallel and Distributed Processing Symposium 
Workshops (IPDPSW), pp. 627-636. IEEE,
2017.

Meyer, Carl D. "Generalized Inversion of Modified 
Matrices." SIAM Journal on Applied Mathematics 24, 
no. 3 (1973): 315-23.


