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Motivated by the NSF 2020 Algorithms for Threat Detection 
challenge, we propose a novel algorithm, ADMITS, which reconstructs 
sparse periodic time-series signals and predicts anomalous 
observations based on the reconstruction. In situations where data is 
very sparse, reconstruction via traditional interpolation or dictionary 
methods may fail to produce desirable results. ADMITS remedies this 
by making a simple assumption of the underlying periodic structure of 
the signal, and can thus make accurate reconstructions and anomaly 
classifications from very limited data. We demonstrate competitive 
anomaly detection performance on a range of different sampling levels 
compared to interpolative and dictionary-based methods with 
exceptional performance in the low sampling regime.
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We have introduced and demonstrated the efficacy of a 
reconstruction and anomaly detection algorithm that relies on known 
structure in data to reconstruct signals more accurately when very few 
samples are present. The main drawback to our method is the heavy 
assumptions required in order to make the reconstruction. Efforts to 
reduce these would increase the generality of the method. A structured 
dictionary reconstruction scheme that makes stronger assumptions 
about which elements to use in reconstruction may be worth 
investigating. Another approach could employ the notion of nearest 
neighbors in flow to construct a graph in which graph signal 
processing-based reconstruction techniques could be applied to better 
leverage all the observed values measured at every sensor. 

The results of this project demonstrate several techniques which 
are applicable to any setting where sparse data is present and 
anomalies must be identified. For example, medical imaging is an area 
with active anomaly detection research, which has been leveraged to 
detect tumors with image processing algorithms of images of patients’ 
organs captured by powerful cameras. However, these are expensive 
and difficult to collect in large datasets – hence, analyzing traffic data 
provides an easy way to experiment and draw conclusions about 
anomaly detection methods.
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Anomaly detection1 is a subfield of machine learning that is 
focused on identifying when data deviates from normality, where 
“normal” is defined in a precise mathematical sense. In our case, a traffic 
anomaly may occur due to a traffic jam or holiday, for example. 
Applications are wide-ranging, including in medicine, cybersecurity, and 
banking. In this project, we investigate anomaly detections methods with 
multiple sets of traffic data collected and distributed by the NSF. Our 
challenge was to identify when a traffic “anomaly” occurs within the data.

The main challenge presented by this NSF data was that it was 
purposefully incomplete – traffic sensors recorded hourly traffic flow data 
for two years, but only one to twenty percent of the data was given to us 
by the NSF. This was to simulate a common issue that occurs in data 
science: sparse data. Hence, our goal of detecting anomalies will be 
predicated on estimating these missing data points.

A traffic anomaly is defined in the following way by the NSF: “For 
a given sensor s, hour h, and weekday w, the nth observation of traffic flow 
d(n)

(shw) is anomalous if 

Put into words, a traffic observation is anomalous if it is three or 
more standard deviations from the sample mean for that station, hour, and 
day. 

Introduction

We are provided three datasets, labeled “City 1”, “City 2”, and “City 3”, in the 
following format:

Data

We want to estimate the missing data points:

From here, we can construct the following image, which allows us to 
explicitly classify anomalies:

Our evaluative metric is the F1 score, which is calculated as follows; 
tp, fp, and fn mean True Positive, False Positive, and False Negative, 
respectively: 

The proposed anomaly detection method operates in two steps. 
First, we reconstruct the signal relying on known a priori periodic 
structure inherent to the signal. The regularity of the signal helps to 
overcome the limitations of existing methods in the low sampling rate 
regime. Then, anomalies are predicted from the reconstructed flow 
according to the ATD classification routine, namely Equation (1). 
However, the rigid anomaly detection rule invites some uncertainty 
near the decision boundary; so, an optional dictionary reconstruction 
step can be used as a discriminator on the predictions to better resolve 
uncertain classifications.

To reconstruct a signal with almost all samples missing, one 
must trade-off the lack of data for stronger assumptions about the 
signal. For example, sparsity methods assume that a linear 
combination of a few basic signals are representative of the measured 
signal. Instead, we assume that the signal has well-defined periodicity 
across multiple scales in time. In our case, traffic signals exhibit 
regular daily patterns (e.g. 0800 traffic is similar each Monday). This 
leads to a structure for how traffic flow during a given week should 
behave. Indeed, if we can learn the structure of a typical weekly traffic 
signal, then we can use observed values to predict unobserved values. 

We estimate the structure of a typical weekly flow signal by 
assuming that the means uw,h for each (w, h) pair are linearly related to 
each other; more precisely, there exists a map c((w1, ,h1), w2,h2()) such 
that for (w1, ,h1) ≠ (w2,h2):

Methodology and Results

For signals obtained at a sufficiently low sampling rate we may 
find that the estimations in are inaccurate. Each pair will have few – or 
no – samples, and any anomaly present will significantly affect the 
sample means and thus the estimated map between them. One way to 
mitigate this is to find a “nearest neighbor'' observed signal from a 
sensor with a higher sampling rate (if one exists). That signal's map c 
can then be used to influence or adjust the map c’ of the lower-sampled 
signal by taking a weighted average of the maps. The nearest neighbor 
signal is chosen to be a signal that has similar sample means to the 
current signal.

To demonstrate the efficacy of the proposed method, we compare 
ADMITS to a patch-based dictionary reconstruction algorithm, linear 
and cubic interpolations, and a baseline detector that applies the ATD 
classification rule (1) on the sample data without any reconstruction. The 
experimental comparisons were performed on the “City1" data set 
provided by the ATD challenge via Caltrans PeMS, which contains 
contiguous hourly traffic flow data at 500 sensors over all of 2016 and 
2017. We conduct experiments at sampling rates [0.01, 0.05, 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8]. At each sampling rate, 100 independent 
randomized trials were performed. For each trial a different 10% 
contiguous chunk of the data is used for training the dictionary, while 
the remainder of the data is sampled at each of the rates on a per-sensor 
basis. Once reconstructed, F1 scores are computed using the explicit 
anomaly detection rule expressed in (2). 

Methodology and Results (continued)

I would like to thank Professor James Murphy, for his 
mentorship and guidance. I would also like to thank Marshall and Ope, 
for being intelligent and hard-working collaborators, and to Dr. Anne 
Moore, for organizing the Summer Scholars programming (even in the 
middle of pandemic!). 

Finally, thank you to the Summer Scholars Program and thank 
you to the T-Tripods Institute (NSF HDR Grant 1934553) for partial 
support of this work. The traffic data collection and challenge was 
funded by NSF DMS 1924513.

Figure 1: A complete data set example Figure 2: The sparse data we would like to 
analyze

Figure 4: Anomaly detection plot. Note the 
anomaly on July 4.

Figure 3: An illustration of what we are given, 
and where we would like to go!

(1)

(2)

uw1,h1 = c((w1, ,h1),(w2,h2)) * uw2,h2 (3)

Figure 5: Reconstruction methods at 5% sampling 
rate over a random 1-week period

Figure 6: F1 score comparison of methods across 
sampling rates


