Analyzing Code Trajectories to Understand VHDL Learning School of

Engineering Brendan Amorin, Shuchin Aeron, Steven Bell, David Hammer, Mark Hempstead, Eric Miller

What is VHDL and why is it Difficult?

• VHDL is a hardware description language that can model the behavior of digital systems.

Simple VHDL Example

Corresponding Hardware

- It is concurrent: statements generally occur simultaneously, as opposed to sequentially.
- · Requires a basic understanding of hardware being designed.
- Typically, novice VHDL programmers first learned a sequential programming language.
- Results in a variety of methods, some erroneous, for completing problems.

C-code Method

Concatenate-bits Method

For-loop Method

What Data We Have

Also, have date and time when code was submitted.

Drawing Solution Trajectories

- Goal of connecting a student's submissions based on their different approaches to solving a problem.
- Use text-based comparison of code.
- · Find first passing submission and compare all previous submissions to it to indicate progress.
- Submissions equally like the final submission have the same rank, and submissions that are identical share the same node.
- Edge between current submission and most similar previous submission.

Sample Student Solution Trajectories along with Diffviewer Tool

Solution Trajectory Metrics

- Use Dijkstra's algorithm to determine the shortest path from initial submission to final submission, which suggests the percentage of submissions that contributed to the student's final solution.
- Timestamps can reveal trends about when students typically submit their assignments.

Percentages for a Selection of Problems

Timeline of when Students Submitted Their Code Relative to the Deadline

Grouping Students by Code:

- Goal of grouping students based on similarities in coding process and solution.
- Affinity matrix calculated with two methods: using Wasserstein metric from optimal transport between different students' code submissions and computing similarity between students' solutions to a problem.
- Spectral Embedding performed on affinity matrix and then k-means clustering used.
- Alternate approach: counting occurrences of keywords in solutions and use these totals as features in k-means clustering.

Optimal-Transport Method

Bag-of-Keywords Method