Background

- We were interested in seeing how machine learning could be applied to educational research contexts. This collaborative project brought together cognitive and learning sciences, STEM education, and machine learning experts from both Tufts University and Cornell University to experiment in the use of machine learning algorithms in understanding student’s lab reports and lab notes.
- Benefits of this novel utilization of machine learning include being able to greatly expand the scope of learning science’s research by sifting through significantly more data at higher rates.
- Analysis of student’s reports rooted in literature on grounded theory and framework analysis. While very data-driven and largely bottom-up, there were key questions that informed what the researchers looked for in their qualitative analysis such as focusing on justification (physics) and instances of uncertainty (biology) when students constructed arguments.

Methods for Physics Data

Student agency

Research Questions: How often are experimentation decisions justified in the lab notes? How often are these decisions based on past data analysis or existing observations? How often are decisions based on theoretical assumptions?

Methods for Biology Data

Student Uncertainty

Research Questions: what do students do when met with uncertainty? Is there a correlation with uncertainty and how much conceptual diversity they cover?

Development of Coding Scheme:
- Started with three categories: procedural decision making, epistemic decision making, and other (e.g. emotion and hedging).
- We cut the other category and focused on students’ justifications of procedural decisions and interpretations of results.
- Finally, we cut the interpretation of the results section, although it was interesting, the scheme was too comprehensive for one round of analysis.

Implementing Coding Scheme:
- Made note of explicit actions students carried out in their experiments.
- Characterized justifications connected to those actions as:
 - Assumptions: A justification based on one or more assumptions about how a model works
 - Explaining: Justifications for the aim to confirm a model, refute a model, or develop a novel representation
 - Based on previous: An argument is made using evidence that has already been observed or analyzed
 - Based on experimental design: A justification that a particular action was taken to fulfill some experimental purpose or logistical need

Examples

- Physics Lab Notes
- Biology Lab Reports

Results

- Coded 160 physics notes
- Initial findings demonstrate the ability of the machine to cluster the physics notes by unit and structure

Future Aims

- Use machine learning algorithms (to be developed) to analyze physics data further
- Finalize bio codes and run it through machine
- Run unsupervised clustering of bio data

References

1. [Cheuk, 2021] Can AI be racist? Color-evasiveness in the application of machine learning to science assessments
2. [Chen et al., 2018] Using Machine Learning to Support Qualitative Coding in Social Science: Shifting The Focus to Ambiguity
3. [Eisenhardt & Graebner, 2007] The Varieties of Case Research: Basic Types, New Directions, and Future Challenges
4. [Kelly & Takahashi, 2008] Epistemic levels in argument analysis: An analysis of university oceanography students’ use of evidence in writing
6. [Robinson, McShane, & Scherr, 2018] Selection, Generalization, and Theories of Cause in Physics Education Research
7. [Barlett, 1932] Chapter X: A Theory of Remembering
8. [Tannen, 1979] What’s in a Frame