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Modern Wireless Systems
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Research Methodology
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Optimization .

Algorithms Results

Machine
Learning

Algorithm 3: Centralized MAB Load Balancing User Association

Input: Learning rat.esoc)r, BSs’ quota vector q, initial reward matrix ', initial matrix of number of
BS selection T = 0

fori=1:T do

Central load-balancer (CLB):

- Applies UCB formula to obtain input reward matrix € = T'"-1 + \,"%({Tj;

- Executes Alg. 1 to obtain n'' and p;

- Informs VUEs of their qfv], and g, if changed;

Each VUE k,:

- Connects to BS j = r]fj;

- Receives reward RE_J_J and reports it to CLB;

CLB:

- Executes an updating rule: BL (Alg. 2), or RTL (Alg. 5), or BGL (Alg. 6) to obtain I'") and T'";
end

Output: Best-to-date association vector  (up to time step T'), I'"! and T




RL for Association and Handover
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Designed a multi-agent DRL
« Each UE is an agent
« Each UE runs a Deep-Q Network

Two versions of interaction:

 Wireless network

— 6 base stations
— 20 users (UE), some are mobile
— User’s color shows association
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How is RL integrated into the System?
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Networks." IEEE Transactions on Wireless
Communications (2024).
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Performance of DRL for Handover in Wireless

Reward vs. Learning Step at the beginning Learning Progress vs User Mobility
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Challenges in Applying RL in Wireless

Testing in a real environment is costly

— Need to have mechanism/algorithms in place and drive around to test
— Or an extensive database of wireless measurements

— Current results are evaluated using simulation

Measurement frequency vs. RL update runtime (overheads)
— Signaling and computation time overheads vs data transmission time
— Need to be evaluated in practical system contexts

New mobility patterns or unseen dynamics
— Need to understand impacts on system performance
— Effect on ramp-up time

System constraints
— Load balancing: centralized vs distributed
— Any communication between agents?



RL in Wireless Systems is gaining popularity
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