Mathematical programming in computational social choice

Gerdus Benade

benade@bu.edu

Preference elicitation for participatory budgeting

Gerdus Benade

Preference elicitation for participatory budgeting

Swaprava Nath Ariel Procaccia

Nisarg Shah

Kobi Gal

Let's warm up with a budgeting problem

- Coffee, transport and relaxation
- Each provides a different value per dollar spent (v_c , v_r , v_t)
- Allocate x_c, x_r, x_t to each category
- Maximize utility gained from budget B

 $\max v_c x_c + v_r x_r + v_t x_t$

s.t.
$$x_r + x_c + x_t \le B$$

 $x_r, x_c, x_t \ge 0$

WHAT IS PB? ABOUT US OUR SERVICES RESOURCES SUPPORT PBP

The Participatory Budgeting Project empowers people to *decide together how to spend public money* to deepen democracy, build stronger communities, and make public budgets more equitable and effective.

PB BY THE NUMBERS

in public funding allocated through PB.

community-generated winning projects.

Image from http://participatorybudgeting.org

CITY OF CAMBRIDGE PARTICIPATORY BUDGETING

How should voters express their preferences?

How should the votes be aggregated?

-Can we limit the cognitive burden on voters?-

- *n* residents *N*, *m* projects *A*
- Project a has cost c_a , global budget B = 1
- Voter i has utility function v_i
- Utilities are additive

$$v_i(S) = \sum_{a \in S} v_i(a)$$
 for every $S \subseteq A$

- *n* residents *N*, *m* projects *A*
- Project a has cost c_a , global budget B = 1
- Voter i has utility function v_i
- Utilities are additive and normalized

 $v_i(A) = 1$ for all $i \in N$

- *n* residents *N*, *m* projects *A*
- Project a has cost c_a , global budget B = 1
- Voter *i* has utility function v_i , utility v_{ia} for alternative *a*
- Utilities are additive and normalized

$$\max_{S} \quad sw(S) = \sum_{a \in S} \sum_{i} v_{i}(a)$$

subject to $c(S) \leq B$

Interlude: the knapsack problem

$$\left\{ \begin{array}{l} \max_{x} \quad \sum_{a} (\sum_{i} v_{ia}) x_{a} \\ \text{subject to} \quad \sum_{a} c_{a} x_{a} \leq B \\ x_{a} \in \{0,1\} \quad \forall a \end{array} \right\} \text{ KNAP}(v)$$

Interlude: the knapsack problem

$$\begin{array}{ccc} \max_{x} & \sum_{a} (\sum_{i} v_{ia}) x_{a} \\ \text{subject to} & \sum_{a} c_{a} x_{a} \leq B \\ & x_{a} \in \{0,1\} \ \forall a \end{array} \right) \quad \text{KNAP}(v)$$

- Notice integer variables x_a
- LP solvable in polynomial time, IP takes exponential time in general
- Knapsack problems are 'easy': thousands of items takes seconds

- *n* residents *N*, *m* projects *A*
- Project a has cost c_a , global budget B = 1
- Voter *i* has utility function v_i , utility v_{ia} for alternative *a*
- Utilities are additive and normalized

$$\max_{S} \quad sw(S) = \sum_{a \in S} \sum_{i} v_{i}(a)$$

subject to $c(S) \leq B$

• Assume voter *i* submits vote ρ_i consistent with $v_i : v_i \triangleright \rho_i$

Implicit utilitarian voting

• Randomized voting rule f vote profile $\vec{\rho}$ as input, returns distribution over feasible sets of projects $f(\vec{\rho})$

$$\operatorname{dist}(f, \vec{\rho}) = \max_{\vec{v}: \vec{v} \succ \vec{\rho}} \frac{\max_{T:c(T) \leq B} sw(T, \vec{v})}{\mathbb{E} \left[sw(f(\vec{\rho}), \vec{v}) \right]} \quad \text{Social welfare of } f \text{ on } \vec{v} \text{]}$$
Worst case over Social welfare ratio consistent utilities (Approximation ratio on \vec{v})

Implicit utilitarian voting

• Randomized voting rule f vote profile $\vec{\rho}$ as input, returns distribution over feasible sets of projects $f(\vec{\rho})$

$$\operatorname{dist}(f,\vec{\rho}) = \max_{\vec{v}:\vec{v}\,\vartriangleright\,\vec{\rho}} \frac{\max_{T:c(T)\leq B} sw(T,\vec{v})}{\mathbb{E}\left[sw(f(\vec{\rho}),\vec{v})\right]}$$

dist(f) =
$$\max_{\overrightarrow{\rho}} \max_{\overrightarrow{v}: \overrightarrow{v} \succ \overrightarrow{\rho}} \frac{\max_{T:c(T) \leq B} sw(T, \overrightarrow{v})}{\mathbb{E} [sw(f(\overrightarrow{\rho}), \overrightarrow{v})]}$$

Worst case over inputs

Decouple input format and aggregation

• Distortion of a voting rule:

dist(f) =
$$\max_{\vec{\rho}} \max_{\vec{v}:\vec{v} \triangleright \vec{\rho}} \frac{\max_{T:c(T) \leq B} sw(T, \vec{v})}{\mathbb{E} [sw(f(\vec{\rho}), \vec{v})]}$$

• Distortion of an input format: the distortion of its best voting rule

How should voters express their preferences?

How should the votes be aggregated?

Can we limit the cognitive burden on voters?

How should the votes be aggregated?

Current practice: greedy aggregation based on number of approvals/appearances in a knapsack etc. (Goel et al.)

Use the input-specific distortion-minimizing voting rules:

Deterministic:
$$f^*(\vec{\rho}) = \underset{S}{\operatorname{argmin}} \underset{\vec{v} : \vec{v} \rhd \vec{\rho}}{\max} \frac{\max_{T:c(T) \leq B} sw(T, \vec{v})}{sw(S, \vec{v})}$$

Distortion-minimizing voting rules via LP

Deterministic: $f^*(\vec{\rho}) = \operatorname{argmin} \max_{\vec{v} : \vec{v} \rhd \vec{\rho}} \frac{\max_{T:c(T) \le B} sw(T,\vec{v})}{sw(S,\vec{v})}$

```
For every S:

For every \vec{v} : \vec{v} \rhd \vec{\rho}:

Compute optimal solution to KNAP(\vec{v}), T

Keep track of worst ratio sw(T, \vec{v})/sw(S, \vec{v})
```

Return S with smallest worst-case ratio

Distortion-minimizing voting rules via LP

Deterministic: $f^*(\vec{\rho}) = \operatorname{argmin} \max_{\vec{v} : \vec{v} \rhd \vec{\rho}} \frac{\max_{T:c(T) \le B} sw(T,\vec{v})}{sw(S,\vec{v})}$

```
For every S:
For every T:
Compute \max_{\vec{v}: \vec{v} \triangleright \vec{\rho}} \operatorname{sw}(T, \vec{v}) / \operatorname{sw}(S, \vec{v})
```

Return S with smallest worst-case ratio

Inner LP (*S*, *T* fixed)

 $\max_{\vec{v}:\vec{v}\,\triangleright\,\vec{\rho}} \operatorname{sw}(\mathsf{T},\vec{v})/\operatorname{sw}(S,\vec{v})$

- x_S , x_T are characteristic vectors of sets S, T (fixed)
 - |A|-dimensional
 - $x_S(a) = 1$ if alternative *a* is in set *S*
- Variables $v_i(a)$ for every voter *i*, alternative *a*

$$\max \frac{\sum_{a} \sum_{i} v_{i}(a) x_{T}(a)}{\sum_{a} \sum_{i} v_{i}(a) x_{S}(a)}$$

s.t.
$$ec{v} \geq 0$$
 , $ec{v} \, arphi \, ec{
ho}$

Consistency constraints are linear

- For example, for a ranking ρ_i
 - $v_i(\rho_i(1)) \ge v_i(\rho_i(2)) \ge \dots \ge v_i(\rho_i(m))$
 - Non-negativity + normalization constraints
- For threshold approval votes with threshold *t*
 - $v_i(a) \ge t$ if a approved
 - $v_i(a) \leq t$ if not approved
 - Non-negativity + normalization constraints

Distortion-minimizing voting rules via LP

For every S:

For every *T*:

Solve
$$\max \frac{\sum_{a} \sum_{i} v_{i}(a) x_{T}(a)}{\sum_{a} \sum_{i} v_{i}(a) x_{S}(a)}$$

s.t. $\vec{v} \ge 0$, $\vec{v} \rhd \vec{\rho}$
LP with fractional objective:
Charnes-Cooper transformation

Return S with smallest worst-case ratio

Experiments

- Real-world participatory budgeting elections
 - Held in Cambridge (MA) in 2015 and 2016
 - Data provided by Ashish Goel and the Stanford Crowdsourced Democracy Team
- 10 projects, 4000 voters
- Real votes $\vec{\rho} \rightarrow$ consistent utility $\vec{v} \rightarrow$ votes in all formats \rightarrow aggregate
- Measure social welfare ratio, compare 4 formats + greedy baselines

$$\frac{\max sw(T, \vec{v})}{sw(f(\vec{\rho}), \vec{v})}$$

How to Make Envy Vanish over Time

Alex Psomas

Ariel Procaccia

Aleks Kazachkov

How can we fairly allocate goods that arrive over time?

How can we fairly allocate goods that arrive over time?

How can we fairly allocate goods that arrive over time?

Envy-freeness No agent prefers another allocation to their own. $ENVY^{ij} = \max\{v_i(A_j) - v_j(A_i), 0\}$ Indivisible goods: EF1 (Envy-free up to 1 good)

$$\left[ENVY^{ij} = \max\{v_i(A_j) - v_j(A_i), 0\}\right]$$

$$ENVY_3^{RB} = 1.5 - 1 = 0.5$$

$$ENVY_3^{BR} = 1 - 0.5 = 0.5$$

Model

- Items arrive online in batches of size k
- *n* agents
- Agent *i* has value $v_{it} \in [0,1]$ for item *t*
- Allocate to minimize $E[ENVY_T]$
- Item values are chosen by adaptive adversary (maximizes $E[ENVY_T]$)

Can we ensure vanishing envy after T items? $\left(\lim_{T\to\infty}\frac{ENVY_T}{T}=0\right)$

Can we ensure *vanishing envy* at time T?

T batches of size 1

t = 1

 $t = T_1 \quad t = 2_1$

T/k batches of size k

Value agent 1	¹ / ₂	1	E	1	E	
Value agent 2	$^{1}/_{2}$	$^{1}/_{4}$	1	ϵ	1	•••
Envy agent 1						
Envy agent 2						

Give to whoever has the highest envy

Value agent 1	1/2	1	ϵ	1	ϵ	•••
Value agent 2	¹ / ₂	$^{1}/_{4}$	1	ε	1	
Envy agent 1						

Envy agent 2

Value agent 1	1/2	1	E	1	E	
Value agent 2	$\frac{1}{2}$	$^{1}/_{4}$	1	ϵ	1	•••
Envy agent 1	-1/2					
Envy agent 2	$^{1}/_{2}$					

Value agent 1	1/2	1	E	1	E	
Value agent 2	1/2	$1/_{4}$	1	ϵ	1	
Envy agent 1	$-\frac{1}{2}$	¹ / ₂				
Envy agent 2	$^{1}/_{2}$	$^{1}/_{4}$				

Value agent 1	1/2	1	ϵ	1	ε	
Value agent 2	¹ / ₂	$1/_{4}$	1	E	1	
Envy agent 1	$-\frac{1}{2}$	$^{1}/_{2}$	$1/2 - \epsilon$			
Envy agent 2	¹ / ₂	$^{1}/_{4}$	⁵ / ₄			

Give to whoever has the highest envy

 $\left(ENVY_T \approx T / 2 \right)$

Items arrive one at a time

- Pretend that every agent values every item at 1.
- Allocate every item uniformly at random.
- Max change in $ENVY_{ij}$ is 1. T items arrive, *i* gets it w.p. 1/n
- Random walk with step size 1, T/n steps. Deviation $\sim \sqrt{T/n}$

Theorem. Allocating unit-valued items uniformly at random yields $ENVY_T \in O\left(\sqrt{T \log n/n}\right)$ with high probability, and $E[ENVY_T] \in O\left(\sqrt{T \log T/n}\right)$.

Items arrive in batches

(**1**, 1, 1)

(0, 1/3,1/2)

(1/2, 0, 1/2)

(**1/8**, 3/4,1)

Next batch arrives

(T/k batches)

Intuition

- When k = 1, $ENVY_T \in \widetilde{\Theta}(\sqrt{T / n})$
- When k = T, $ENVY_T \leq 1$

k = 1

- Envy changed by $\leq 1~{\rm per}~{\rm round}$
- $ENVY^{ij}$ changed $\approx T / n$ times
- Bound: $ENVY_T \in \widetilde{\Theta}(1 \cdot \sqrt{T / n})$

General k

- Envy changes by ≤ 1 per round
- $ENVY^{ij}$ may change T / k times

• Bound:
$$ENVY_T \in \widetilde{\Theta}(\sqrt{T / k})$$
 ?

Theorem. $ENVY_{T,k} \in \Omega(\sqrt{T/kn})$ and $ENVY_{T,k} \in \tilde{O}(\sqrt{T/k})$.

Upper bound (batches)

General k

- Envy changes by ≤ 1 per round
- $ENVY^{ij}$ may change T / k times
- Bound: $ENVY_T \in \widetilde{\Theta}(\sqrt{T / k})$?

Problems

Can we find `balanced' allocations across batches?

We don't need EF1 (step size 1) per batch, any bounded constant change in envies will do.

Let's try rounding near-integral envy-free allocations.

Finding near integral envy-free solutions

x_{ij} fraction of item *j* given to agent *i v_{ij}* ≤ 1 utility of agent *i* for item *j*

$$\begin{array}{ll} \sum_{j} v_{ij} x_{ij} \geq \sum_{j} v_{ij} x_{kj} & \forall i,k \;\; \mathsf{Envy-freeness} \\ \sum_{i} x_{ij} = 1 \;\; \forall j \;\; & \mathsf{Every \; item \; assigned} \\ x_{ij} \geq 0 \;\; \forall i,j \;\; & \mathsf{Non-negativity} \end{array}$$

How many fractional values? Number of variables: nmNumber of const: $n^2 - n + m$ So $\leq n^2 - n + m$ pos. variables

(Basically) tight, so $\sim n$ fractional items per agent

Rounding introduces n envy

Feasible solution is envy-free. We have to round it to get allocation Rounding introduces envy: up to 1 per rounded item per agent

• No player receives more than two fractional items.

- No player receives more than two fractional items.
- Rounding fractional items randomly guarantees envy changes by ≤ 4

- x_{ij} fraction of item *j* given to agent *i*
- $v_{ij} \leq 1$ utility of agent *i* for item *j*
- Indicator variables x_{ij}^0 , x_{ij}^1 : sum to 0 when x_{ij} is fractional, sum to 1 o.w.

$$\begin{split} \sum_{j} v_{ij} x_{ij} &\geq \sum_{j} v_{ij} x_{kj} \quad \forall i, k \\ \sum_{i} x_{ij} &= 1 \quad \forall j \\ x_{ij} &\geq 0 \quad \forall i, j \\ x_{ij}^{0} &\leq x_{ij} \leq 1 - x_{ij}^{1} \quad \forall i, j \\ \sum_{j} \left(x_{ij}^{0} + x_{ij}^{1} \right) &\geq m - 2 \quad \forall i \\ x_{ij}^{0}, x_{ij}^{1} \in \{0, 1\} \quad \forall i, j \end{split}$$

Envy-freeness Every item assigned Non-negativity Indicator variable constraints At most 2 fractional items per agent

Questions