Mathematical programming in computational social choice

Gerdus Benade
benade@bu.edu

Preference elicitation for participatory budgeting

Gerdus Benade

Preference elicitation for participatory budgeting

Swaprava Nath

Ariel Procaccia

Nisarg Shah

Kobi Gal

Let's warm up with a budgeting problem

- Coffee, transport and relaxation
- Each provides a different value per dollar spent $\left(v_{c}, v_{r}, v_{t}\right)$
- Allocate x_{c}, x_{r}, x_{t} to each category
- Maximize utility gained from budget B

$$
\begin{array}{ll}
\max & v_{c} x_{c}+v_{r} x_{r}+v_{t} x_{t} \\
\text { s.t. } & x_{r}+x_{c}+x_{t} \leq B \\
& x_{r}, x_{c}, x_{t} \geq 0
\end{array}
$$

The Participatory Budgeting Project empowers people to decide together how to spend public money to deepen democracy, build stronger communities, and make public budgets more equitable and effective.

PB BY THE NUMBERS

in public funding allocated through PB.

PB participants across the US \& Canada.

community-generated winning projects.

CITY OF CAMBRIDGE PARTICIPATORY BUDGETING

How should voters express their preferences?

How should the votes be aggregated?

Can we limit the cognitive burden on voters?

Model

- n residents N, m projects A
- Project a has cost c_{a}, global budget $B=1$
- Voter i has utility function v_{i}
- Utilities are additive

$$
v_{i}(S)=\sum_{a \in S} v_{i}(a) \text { for every } S \subseteq A
$$

Model

- n residents N, m projects A
- Project a has cost c_{a}, global budget $B=1$
- Voter i has utility function v_{i}
- Utilities are additive and normalized

$$
v_{i}(A)=1 \text { for all } i \in N
$$

Model

- n residents N, m projects A
- Project a has cost c_{a}, global budget $B=1$
- Voter i has utility function v_{i}, utility $v_{i a}$ for alternative a
- Utilities are additive and normalized

$$
\begin{gathered}
\max _{S} \quad \begin{array}{c}
\operatorname{sw}(S)=\sum_{a \in S} \sum_{i} v_{i}(a) \\
\text { subject to } c(S) \leq B
\end{array}, ~
\end{gathered}
$$

Interlude: the knapsack problem

$$
\begin{array}{ll}
\max _{x} & \sum_{a}\left(\sum_{i} v_{i a}\right) x_{a} \\
\text { subject to } \quad \sum_{a} c_{a} x_{a} \leq B
\end{array}
$$

$$
\operatorname{KNAP}(v)
$$

Interlude: the knapsack problem

$$
\begin{aligned}
& \max _{x} \quad \sum_{a}\left(\sum_{i} v_{i a}\right) x_{a} \\
& \text { subject to } \quad \sum_{a} c_{a} x_{a} \leq B \\
& x_{a} \in\{0,1\} \quad \forall a .
\end{aligned}
$$

$\operatorname{KNAP}(v)$

- Notice integer variables x_{a}
- LP solvable in polynomial time, IP takes exponential time in general
- Knapsack problems are 'easy': thousands of items takes seconds

Model

- n residents N, m projects A
- Project a has cost c_{a}, global budget $B=1$
- Voter i has utility function v_{i}, utility $v_{i a}$ for alternative a
- Utilities are additive and normalized

$$
\begin{array}{cc}
\max _{S} & \operatorname{sw}(S)=\sum_{a \in S} \sum_{i} v_{i}(a) \\
& \text { subject to } c(S) \leq B
\end{array}
$$

- Assume voter i submits vote ρ_{i} consistent with $v_{i}: v_{i} \triangleright \rho_{i}$

$\begin{aligned} & \text { Ranking } \\ & \text { by value }\end{aligned}>(0$ (ช)

$\begin{aligned} & \begin{array}{l}\text { Ranking } \\ \text { by VFM }\end{array}>\text { ลix (0) }\end{aligned}>$

Implicit utilitarian voting

- Randomized voting rule f vote profile $\vec{\rho}$ as input, returns distribution over feasible sets of projects $f(\vec{\rho})$

$$
\operatorname{dist}(f, \vec{\rho})=\max _{\vec{v}: \vec{v} \triangleright \vec{\rho}} \frac{\max _{T: c(T) \leq B S W(T, \vec{v})}}{\mathbb{E}[S W(f(\vec{\rho}), \vec{v})]}(\text { Social welfare of } f \text { on } \vec{v})
$$

Implicit utilitarian voting

- Randomized voting rule f vote profile $\vec{\rho}$ as input, returns distribution over feasible sets of projects $f(\vec{\rho})$

$$
\begin{aligned}
& \operatorname{dist}(f, \vec{\rho})=\max _{\vec{v}: \vec{v} \triangleright \vec{\rho}} \frac{\max _{T: c(T) \leq B} S W(T, \vec{v})}{\mathbb{E}[\operatorname{sw}(f(\vec{\rho}), \vec{v})]} \\
& \operatorname{dist}(f)=\max _{\vec{p}} \max _{\vec{v}} \frac{\max _{T: c(T) \leq B} S w(T, \vec{v})}{\mathbb{E}[s w(f(\vec{\rho}), \vec{v})]} \\
& \begin{array}{l}
\text { Worst case } \\
\text { over inputs }
\end{array}
\end{aligned}
$$

Decouple input format and aggregation

- Distortion of a voting rule:

$$
\operatorname{dist}(f)=\max _{\vec{\rho}} \max _{\vec{v}: \vec{v} \triangleright \vec{\rho}} \frac{\max _{T: c(T) \leq B} s w(T, \vec{v})}{\mathbb{E}[s w(f(\vec{\rho}), \vec{v})]}
$$

- Distortion of an input format: the distortion of its best voting rule

| Knapsack voting | | $\widetilde{\Theta}(m)$ |
| :--- | :--- | :--- | :--- |
| Ranking by value | $\widetilde{\Theta}(\sqrt{m})$ | |
| Ranking by VFM | $\widetilde{\Theta}(\sqrt{m})$ | |
| Threshold approval | $0\left(\log ^{2} m\right)$ | |

How should voters express their preferences?

How should the votes be aggregated?

Can we limit the cognitive burden on voters?

How should the votes be aggregated?

Current practice: greedy aggregation based on number of approvals/appearances in a knapsack etc. (Goel et al.)

Use the input-specific distortion-minimizing voting rules:
Deterministic: $\quad f^{*}(\vec{\rho})=\underset{S}{\operatorname{argmin}} \max _{\vec{v}: \vec{v} \triangleright \vec{\rho}} \frac{\max _{T: c(T) \leq B} s w(T, \vec{v})}{s w(S, \vec{v})}$

Distortion-minimizing voting rules via LP

Deterministic: $\quad f^{*}(\vec{\rho})=\operatorname{argmin} \max _{\vec{v}: \vec{v} \triangleright \vec{\rho}} \frac{\max _{T: c c}(T) \leq B s w(T, \vec{v})}{s w(S, \vec{v})}$

For every S :
For every $\vec{v}: \vec{v} \triangleright \vec{\rho}$:
Compute optimal solution to $\operatorname{KNAP}(\vec{v}), T$
Keep track of worst ratio $\operatorname{sw}(\mathrm{T}, \vec{v}) / \operatorname{sw}(S, \vec{v})$

Return S with smallest worst-case ratio

Distortion-minimizing voting rules via LP

Deterministic: $\quad f^{*}(\vec{\rho})=\operatorname{argmin} \max _{\vec{v}: \vec{v} \triangleright \vec{\rho}} \frac{\max _{T: c(T) \leq B} s w(T, \vec{v})}{s w(s, \vec{v})}$

For every S :
For every T :
Compute $\max _{\vec{v}: \vec{v} \triangleright \vec{\rho}} \operatorname{sw}(\mathrm{~T}, \vec{v}) / \operatorname{sw}(S, \vec{v})$

Return S with smallest worst-case ratio

Inner LP (S, T fixed)

- x_{S}, x_{T} are characteristic vectors of sets S, T (fixed)
- $|A|$-dimensional
- $x_{S}(a)=1$ if alternative a is in set S
- Variables $v_{i}(a)$ for every voter i, alternative a

$$
\begin{aligned}
& \max \frac{\sum_{a} \sum_{i} v_{i}(a) x_{T}(a)}{\sum_{a} \sum_{i} v_{i}(a) x_{S}(a)} \\
& \text { s.t. } \vec{v} \geq 0, \vec{v} \triangleright \vec{\rho}
\end{aligned}
$$

Consistency constraints are linear

- For example, for a ranking ρ_{i}
- $v_{i}\left(\rho_{i}(1)\right) \geq v_{i}\left(\rho_{i}(2)\right) \geq \cdots \geq v_{-} i\left(\rho_{i}(m)\right)$
- Non-negativity + normalization constraints
- For threshold approval votes with threshold t
- $v_{i}(a) \geq t$ if a approved
- $v_{i}(a) \leq t$ if not approved
- Non-negativity + normalization constraints

Distortion-minimizing voting rules via LP

For every S :

For every T :

$$
\begin{array}{r}
\text { Solve } \quad \max \frac{\sum_{a} \sum_{i} v_{i}(a) x_{T}(a)}{\sum_{a} \sum_{i} v_{i}(a) x_{S}(a)} \\
\text { s.t. } \vec{v} \geq 0, \vec{v} \triangleright \vec{\rho}
\end{array}
$$

LP with fractional objective:
Charnes-Cooper transformation

Return S with smallest worst-case ratio

Experiments

- Real-world participatory budgeting elections
- Held in Cambridge (MA) in 2015 and 2016
- Data provided by Ashish Goel and the Stanford Crowdsourced Democracy Team
- 10 projects, 4000 voters
- Real votes $\vec{\rho} \rightarrow$ consistent utility $\vec{v} \rightarrow$ votes in all formats \rightarrow aggregate
- Measure social welfare ratio, compare 4 formats + greedy baselines

$$
\left(\frac{\max s w(T, \vec{v})}{\operatorname{sw}(f(\vec{\rho}), \vec{v})}\right)
$$

How to Make Envy Vanish over Time

Alex Psomas

Aleks Kazachkov

Ariel Procaccia

How can we fairly allocate goods that arrive over time?

How can we fairly]allocate goods that arrive over time?

Envy-freeness

No agent prefers another allocation to their own.

$$
E N V Y^{i j}=\max \left\{v_{i}\left(A_{j}\right)-v_{i}\left(A_{i}\right), 0\right\}
$$

How can we (fairly)allocate goods that arrive over time?

Envy-freeness

No agent prefers another allocation to their own.

$$
E N V Y^{i j}=\max \left\{v_{i}\left(A_{j}\right)-v_{j}\left(A_{i}\right), 0\right\}
$$

Indivisible goods: EF1 (Envy-free up to 1 good)

$$
\left(E N V Y^{i j}=\max \left\{v_{i}\left(A_{j}\right)-v_{j}\left(A_{i}\right), 0\right\}\right)
$$

$$
E N V Y_{3}^{R B}=1.5-1=0.5
$$

$$
E N V Y_{3}^{B R}=1-0.5=0.5
$$

1

Model

- Items arrive online in batches of size k
- n agents
- Agent i has value $v_{i t} \in[0,1]$ for item t
- Allocate to minimize $E\left[E N V Y_{T}\right]$
- Item values are chosen by adaptive adversary (maximizes $\mathrm{E}\left[E N V Y_{T}\right]$)

Can we ensure vanishing envy after T items?

$$
\left(\lim _{T \rightarrow \infty} \frac{E N V Y_{T}}{T}=0\right)
$$

Can we ensure vanishing envy at time T ?

T batches of size 1
T / k batches of size k

Greedy deterministic allocation

Give to whoever has the highest envy

Value agent 1	$1 / 2$	1	ϵ	1	ϵ	\ldots
Value agent 2	$1 / 2$	$1 / 4$	1	ϵ	1	\ldots

Envy agent 1

Envy agent 2

Greedy deterministic allocation

Give to whoever has the highest envy

Value agent 1	$1 / 2$	1	ϵ	1	ϵ	\ldots
Value agent 2	$1 / 2$	$1 / 4$	1	ϵ	1	\ldots

Envy agent 1

Envy agent 2

Greedy deterministic allocation

Give to whoever has the highest envy

Value agent 1	$1 / 2$	1	ϵ	1	ϵ	\ldots
Value agent 2	$1 / 2$	$1 / 4$	1	ϵ	1	\ldots
Envy agent 1	$-1 / 2$					
Envy agent 2	$1 / 2$					

Greedy deterministic allocation

Give to whoever has the highest envy

Value agent 1	$1 / 2$	1	ϵ	1	ϵ	\ldots
Value agent 2	$1 / 2$	$1 / 4$	1	ϵ	1	\ldots
Envy agent 1	$-1 / 2$	$1 / 2$				
Envy agent 2	$1 / 2$	$1 / 4$				

Greedy deterministic allocation

Give to whoever has the highest envy

Value agent 1	$1 / 2$	1	ϵ	1	ϵ	\ldots
Value agent 2	$1 / 2$	$1 / 4$	1	ϵ	1	\ldots
Envy agent 1	$-1 / 2$	$1 / 2$	$1 / 2-\epsilon$			
Envy agent 2	$1 / 2$	$1 / 4$	$5 / 4$			

Greedy deterministic allocation

Give to whoever has the highest envy

Value agent 1	$1 / 2$	1	ϵ	1	ϵ	\ldots
Value agent 2	$1 / 2$	$(1 / 4$	1	ϵ	1	\ldots
Envy agent 1	$-1 / 2$	$1 / 2$	$1 / 2-\epsilon$	$3 / 2-\epsilon$		
Envy agent 2	$1 / 2$	$1 / 4$	$5 / 4$	$5 / 4-\epsilon$		

Greedy deterministic allocation

Give to whoever has the highest envy

Value agent 1	$1 / 2$	1	ϵ	1	ϵ	\cdots
Value agent 2	$1 / 2$	$(1 / 4$	1	ϵ	1	\cdots
Envy agent 1	$-1 / 2$	$1 / 2$	$1 / 2-\epsilon$	$3 / 2-\epsilon$	$3 / 2-2 \epsilon$	\cdots
Envy agent 2	$1 / 2$	$1 / 4$	$5 / 4$	$5 / 4-\epsilon$	$9 / 4-\epsilon$	\cdots

$\left(E N V Y_{T} \approx T / 2\right)$

Items arrive one at a time

- Pretend that every agent values every item at 1.)
- Allocate every item uniformly at random.
- Max change in $E N V Y_{i j}$ is 1 . T items arrive, i gets it w.p. $1 / n$
- Random walk with step size $1, \mathrm{~T} / \mathrm{n}$ steps. Deviation $\sim \sqrt{T / n}$

Theorem. Allocating unit-valued items uniformly at random yields $E N V Y_{T} \in$ $O(\sqrt{T \log n / n})$ with high probability, and $E\left[E N V Y_{T}\right] \in O(\sqrt{T \log T / n})$.

Items arrive in batches

(1, 1/2, 1/4)
$(1,1,1)$

(1/2, 0,1/2)
(0, 1/3,1/2)

(1/8, 3/4,1)

Next batch arrives
(T / k batches)

Intuition

- When $k=1, E N V Y_{T} \in \widetilde{\Theta}(\sqrt{T / n})$
- When $k=T, E N V Y_{T} \leq 1$

$$
k=1
$$

- Envy changed by ≤ 1 per round
- $E N V Y^{i j}$ changed $\approx T / n$ times
- Bound: $E N V Y_{T} \in \widetilde{\Theta}(1 \cdot \sqrt{T / n})$

General k

- Envy changes by ≤ 1 per round
- ENVY ${ }^{i j}$ may change T / k times
- Bound: $E N V Y_{T} \in \widetilde{\Theta}(\sqrt{T / k})$?

Theorem. $E N V Y_{T, k} \in \Omega(\sqrt{T / k n})$ and $E N V Y_{T, k} \in \tilde{O}(\sqrt{T / k})$.

Upper bound (batches)

Problems

General k

- Envy changes by ≤ 1 per round
- ENVY ${ }^{i j}$ may change T / k times
- Bound: $E N V Y_{T} \in \widetilde{\Theta}(\sqrt{T / k})$?
- Can we find 'balanced' allocations across batches?

We don't need EF1 (step size 1) per batch, any bounded constant change in envies will do.

Let's try rounding near-integral envy-free allocations.

Finding near integral envy-free solutions

- $x_{i j}$ fraction of item j given to agent i
- $v_{i j} \leq 1$ utility of agent i for item j

How many fractional values?
Number of variables: $n m$
Number of const: $\mathrm{n}^{2}-\mathrm{n}+m$ So $\leq n^{2}-n+m$ pos.
variables
(Basically) tight, so $\sim n$
fractional items per agent
Rounding introduces n envy

Feasible solution is envy-free. We have to round it to get allocation Rounding introduces envy: up to 1 per rounded item per agent

Theorem (Stromquist, 1980). Suppose n agents have 'reasonable' valuations over $[0,1]$. Then there exists an envy-free division of the interval in which every agent receives a single contiguous segment.

Theorem (Stromquist, 1980). Suppose n agents have 'reasonable' valuations over $[0,1]$. Then there exists an envy-free division of the interval in which every agent receives a single contiguous segment.

Theorem (Stromquist 1980). Suppose n agents have `reasonable' valuations over $[0,1]$. Then there exists an envy-free division of the interval in which every agent receives a single contiguous segment.

Theorem (Stromquist 1980). Suppose n agents have 'reasonable' valuations over $[0,1]$. Then there exists an envy-free division of the interval in which every agent receives a single contiguous segment.

- No player receives more than two fractional items.

Theorem (Stromquist 1980). Suppose n agents have 'reasonable' valuations over $[0,1]$. Then there exists an envy-free division of the interval in which every agent receives a single contiguous segment.

- No player receives more than two fractional items.
- Rounding fractional items randomly guarantees envy changes by ≤ 4

Theorem (Stromquist 1980). Suppose n agents have `reasonable' valuations over $[0,1]$. Then there exists an envy-free division of the interval in which every agent receives a single contiguous segment.

- $x_{i j}$ fraction of item j given to agent i
- $v_{i j} \leq 1$ utility of agent i for item j
- Indicator variables $x_{i j}^{0}, x_{i j}^{1}$: sum to 0 when $x_{i j}$ is fractional, sum to 1 o.w.

$$
\begin{aligned}
& \sum_{j} v_{i j} x_{i j} \geq \sum_{j} v_{i j} x_{k j} \forall i, k \\
& \quad \sum_{i} x_{i j}=1 \quad \forall j \\
& \quad x_{i j} \geq 0 \quad \forall i, j \\
& x_{i j}^{0} \leq x_{i j} \leq 1-x_{i j}^{1} \quad \forall i, j \\
& \sum_{j}\left(x_{i j}^{0}+x_{i j}^{1}\right) \geq m-2 \forall i \\
& x_{i j}^{0}, x_{i j}^{1} \in\{0,1\} \forall i, j
\end{aligned}
$$

Envy-freeness
 Envy-freeness

Every item assigned
Non-negativity
Indicator variable constraints
At most 2 fractional items per agent

Questions

