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Let’s warm up with a budgeting problem

• Coffee, transport and relaxation

• Each provides a different value per dollar spent (𝑣𝑐 , 𝑣𝑟 , 𝑣𝑡)

• Allocate 𝑥𝑐 , 𝑥𝑟 , 𝑥𝑡 to each category

• Maximize utility gained from budget 𝐵

max𝑣𝑐𝑥𝑐 + 𝑣𝑟𝑥𝑟 + 𝑣𝑡𝑥𝑡

𝑠. 𝑡. 𝑥𝑟+ 𝑥𝑐+ 𝑥𝑡 ≤ 𝐵
𝑥𝑟 , 𝑥𝑐 , 𝑥𝑡 ≥ 0
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How should voters express their preferences?

How should the votes be aggregated?

Can we limit the cognitive burden on voters?



Model

• 𝑛 residents 𝑁, 𝑚 projects 𝐴

• Project 𝑎 has cost 𝑐𝑎, global budget 𝐵 = 1

• Voter 𝑖 has utility function 𝑣𝑖
• Utilities are additive

𝑣𝑖 𝑆 = σ𝑎∈𝑆 𝑣𝑖(𝑎) for every 𝑆 ⊆ 𝐴
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Model

• 𝑛 residents 𝑁, 𝑚 projects 𝐴

• Project 𝑎 has cost 𝑐𝑎, global budget 𝐵 = 1

• Voter 𝑖 has utility function 𝑣𝑖
• Utilities are additive and normalized

𝑣𝑖 𝐴 = 1 for all 𝑖 ∈ 𝑁

11



Model

• 𝑛 residents 𝑁, 𝑚 projects 𝐴

• Project 𝑎 has cost 𝑐𝑎, global budget 𝐵 = 1

• Voter 𝑖 has utility function 𝑣𝑖, utility 𝑣𝑖𝑎 for alternative 𝑎

• Utilities are additive and normalized

max
𝑆

sw 𝑆 = σ𝑎∈𝑆σ𝑖 𝑣𝑖(𝑎)

subject to   𝑐 𝑆 ≤ 𝐵
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Interlude: the knapsack problem

max
𝑥

σ𝑎(σ𝑖 𝑣𝑖𝑎)𝑥𝑎

subject to   σ𝑎 𝑐𝑎𝑥𝑎 ≤ 𝐵
𝑥𝑎∈ 0,1 ∀𝑎

KNAP(𝑣)



Interlude: the knapsack problem

max
𝑥

σ𝑎(σ𝑖 𝑣𝑖𝑎)𝑥𝑎

subject to   σ𝑎 𝑐𝑎𝑥𝑎 ≤ 𝐵
𝑥𝑎∈ 0,1 ∀𝑎

• Notice integer variables 𝑥𝑎
• LP solvable in polynomial time, IP takes exponential time in general 

• Knapsack problems are ‘easy’: thousands of items takes seconds

KNAP(𝑣)



Model

• 𝑛 residents 𝑁, 𝑚 projects 𝐴

• Project 𝑎 has cost 𝑐𝑎, global budget 𝐵 = 1

• Voter 𝑖 has utility function 𝑣𝑖, utility 𝑣𝑖𝑎 for alternative 𝑎

• Utilities are additive and normalized

max
𝑆

sw 𝑆 = σ𝑎∈𝑆σ𝑖 𝑣𝑖(𝑎)

subject to   𝑐 𝑆 ≤ 𝐵

• Assume voter 𝑖 submits vote 𝜌𝑖 consistent with 𝑣𝑖 : 𝑣𝑖 ⊳ 𝜌𝑖
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Cost: 3Cost: 3Cost: 7 Cost: 1
Utility: 2Utility: 7 Utility: 4 Utility: 2

Knapsack 
vote

Ranking 
by value

Threshold 
approval

Ranking 
by VFM Threshold 3

Budget 7
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Implicit utilitarian voting

• Randomized voting rule 𝑓 vote profile Ԧ𝜌 as input, returns distribution 
over feasible sets of projects 𝑓 Ԧ𝜌

dist(𝑓, Ԧ𝜌) = max
𝑣 ∶ 𝑣 ⊳ 𝜌

max𝑇:𝑐 𝑇 ≤𝐵 𝑠𝑤(𝑇, Ԧ𝑣)

𝔼 [𝑠𝑤 𝑓 Ԧ𝜌 , Ԧ𝑣 ]
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Worst case over 
consistent utilities

Social welfare ratio 
(Approximation ratio on Ԧ𝑣)

Social welfare of 𝑓 on Ԧ𝑣

Knapsack solution for Ԧ𝑣



Implicit utilitarian voting

• Randomized voting rule 𝑓 vote profile Ԧ𝜌 as input, returns distribution 
over feasible sets of projects 𝑓 Ԧ𝜌

dist(𝑓, Ԧ𝜌) = max
𝑣 ∶ 𝑣 ⊳ 𝜌

max𝑇:𝑐 𝑇 ≤𝐵 𝑠𝑤(𝑇, Ԧ𝑣)

𝔼 [𝑠𝑤 𝑓 Ԧ𝜌 , Ԧ𝑣 ]

dist(𝑓) = max
𝜌

max
𝑣 ∶ 𝑣 ⊳ 𝜌

max𝑇:𝑐 𝑇 ≤𝐵 𝑠𝑤(𝑇, Ԧ𝑣)

𝔼 [𝑠𝑤 𝑓 Ԧ𝜌 , Ԧ𝑣 ]
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Worst case 
over inputs



Decouple input format and aggregation

• Distortion of a voting rule:

dist(𝑓) = max
𝜌

max
𝑣 ∶ 𝑣 ⊳ 𝜌

max𝑇:𝑐 𝑇 ≤𝐵 𝑠𝑤(𝑇, Ԧ𝑣)

𝔼 [𝑠𝑤 𝑓 Ԧ𝜌 , Ԧ𝑣 ]

• Distortion of an input format: the distortion of its best voting rule
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Knapsack voting

Ranking by value

Threshold approval

Ranking by VFM

෩Θ(𝑚)

෩Θ( 𝑚 )

෩Θ( 𝑚 )

𝑂(log2𝑚)
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How should voters express their preferences?

How should the votes be aggregated?

Can we limit the cognitive burden on voters?



How should the votes be aggregated?

Current practice: greedy aggregation based on number of 
approvals/appearances in a knapsack etc. (Goel et al.)

Use the input-specific distortion-minimizing voting rules:

Deterministic: 𝑓∗( Ԧ𝜌) = argmin max
𝑣 ∶ 𝑣 ⊳ 𝜌

max𝑇:𝑐 𝑇 ≤𝐵 𝑠𝑤(𝑇,𝑣)

𝑠𝑤 𝑆,𝑣
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Distortion-minimizing voting rules via LP

Deterministic: 𝑓∗( Ԧ𝜌) = argmin max
𝑣 ∶ 𝑣 ⊳ 𝜌

max𝑇:𝑐 𝑇 ≤𝐵 𝑠𝑤(𝑇,𝑣)

𝑠𝑤 𝑆,𝑣

For every 𝑆: 

For every Ԧ𝑣 ∶ Ԧ𝑣 ⊳ Ԧ𝜌 :
Compute optimal solution to KNAP Ԧ𝑣 , 𝑇

Keep track of worst ratio sw(T, Ԧ𝑣)/𝑠𝑤(𝑆, Ԧ𝑣)

Return 𝑆 with smallest worst-case ratio



Distortion-minimizing voting rules via LP

Deterministic: 𝑓∗( Ԧ𝜌) = argmin max
𝑣 ∶ 𝑣 ⊳ 𝜌

max𝑇:𝑐 𝑇 ≤𝐵 𝑠𝑤(𝑇,𝑣)

𝑠𝑤 𝑆,𝑣

For every 𝑆: 

For every 𝑇:

Compute max
𝑣 ∶ 𝑣 ⊳ 𝜌

sw(T, Ԧ𝑣)/𝑠𝑤(𝑆, Ԧ𝑣)

Return 𝑆 with smallest worst-case ratio



Inner LP (𝑆, 𝑇 fixed)

• 𝑥𝑆, 𝑥𝑇 are characteristic vectors of sets 𝑆, 𝑇 (fixed)
• 𝐴 -dimensional

• 𝑥𝑆 𝑎 = 1 if alternative 𝑎 is in set 𝑆

• Variables 𝑣𝑖(𝑎) for every voter 𝑖, alternative 𝑎

max
σ𝑎σ𝑖 𝑣𝑖 𝑎 𝑥𝑇(𝑎)

σ𝑎σ𝑖 𝑣𝑖 𝑎 𝑥𝑆(𝑎)

s.t. Ԧ𝑣 ≥ 0 , Ԧ𝑣 ⊳ Ԧ𝜌

max
𝑣 ∶ 𝑣 ⊳ 𝜌

sw(T, Ԧ𝑣)/𝑠𝑤(𝑆, Ԧ𝑣)



Consistency constraints are linear

• For example, for a ranking 𝜌𝑖
• 𝑣𝑖 𝜌𝑖 1 ≥ 𝑣𝑖 𝜌𝑖 2 ≥ ⋯ ≥ 𝑣_𝑖(𝜌𝑖 𝑚 )

• Non-negativity + normalization constraints

• For threshold approval votes with threshold 𝑡
• 𝑣𝑖 𝑎 ≥ 𝑡 if 𝑎 approved

• 𝑣𝑖 𝑎 ≤ 𝑡 if not approved

• Non-negativity + normalization  constraints



Distortion-minimizing voting rules via LP

For every 𝑆: 

For every 𝑇:

Solve     max
σ𝑎 σ𝑖 𝑣𝑖 𝑎 𝑥𝑇(𝑎)

σ𝑎 σ𝑖 𝑣𝑖 𝑎 𝑥𝑆(𝑎)

s.t. Ԧ𝑣 ≥ 0 , Ԧ𝑣 ⊳ Ԧ𝜌

Return 𝑆 with smallest worst-case ratio

LP with fractional objective:
Charnes-Cooper transformation



Experiments

• Real-world participatory budgeting elections 
• Held in Cambridge (MA) in 2015 and 2016

• Data provided by Ashish Goel and the Stanford Crowdsourced Democracy Team

• 10 projects, 4000 voters

• Real votes Ԧ𝜌 → consistent utility Ԧ𝑣 → votes in all formats → aggregate

• Measure social welfare ratio, compare 4 formats + greedy baselines

29

max 𝑠𝑤(𝑇, Ԧ𝑣)

𝑠𝑤(𝑓 Ԧ𝜌 , Ԧ𝑣)



Det Thr. App

Rand. Thr. App

Rand. Value

Det. Value

Det. Knapsack

Rand. Knapsack

Rand. VFM

Det. VFM

Greedy Knapsack

Greedy 4-Approval
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How to Make Envy 
Vanish over Time
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How can we fairly allocate goods that arrive 
over time?



How can we fairly allocate goods that arrive 
over time?

Envy-freeness
No agent prefers another allocation to their own.

𝐸𝑁𝑉𝑌𝑖𝑗 = max{𝑣𝑖 𝐴𝑗 − 𝑣𝑖 𝐴𝑖 , 0}



How can we fairly allocate goods that arrive 
over time?

Envy-freeness
No agent prefers another allocation to their own.

𝐸𝑁𝑉𝑌𝑖𝑗 = max{𝑣𝑖 𝐴𝑗 − 𝑣𝑗 𝐴𝑖 , 0}

Indivisible goods: EF1 (Envy-free up to 1 good)



1

1



1

1

0

0



0.5

0.5

1

1

0

0



1

1

0.5

0.5



1

0

1

1

0.5

0.5



1

1

0.5

1.5

𝐸𝑁𝑉𝑌3
𝑅𝐵 = 1.5 − 1 = 0.5

𝐸𝑁𝑉𝑌3
𝐵𝑅 = 1 − 0.5 = 0.5

𝐸𝑁𝑉𝑌𝑖𝑗 = max{𝑣𝑖 𝐴𝑗 − 𝑣𝑗 𝐴𝑖 , 0}



Model

• Items arrive online in batches of size 𝑘

• 𝑛 agents 

• Agent 𝑖 has value 𝑣𝑖𝑡 ∈ [0,1] for item 𝑡

• Allocate to minimize E[𝐸𝑁𝑉𝑌𝑇]

• Item values are chosen by adaptive adversary (maximizes E[𝐸𝑁𝑉𝑌𝑇])



Can we ensure vanishing envy after 𝑇 items?

lim
𝑇→∞

𝐸𝑁𝑉𝑌𝑇
𝑇

= 0



Can we ensure vanishing envy at time 𝑇?

𝑇 batches of size 1 Τ𝑇 𝑘 batches of size 𝑘

…

𝑡 = 1𝑡 = 2𝑡 = 𝑇/𝑘
𝑡 = 1𝑡 = 2𝑡 = 𝑇

. . .



Greedy deterministic allocation

Value agent 1 ൗ1 2 1 𝜖 1 𝜖 …

Value agent 2 ൗ1 2 ൗ1 4 1 𝜖 1 …

Envy agent 1

Envy agent 2

Give to whoever has the highest envy



Greedy deterministic allocation

Value agent 1 ൗ1 2 1 𝜖 1 𝜖 …

Value agent 2 ൗ1 2 ൗ1 4 1 𝜖 1 …

Envy agent 1

Envy agent 2

Give to whoever has the highest envy



Greedy deterministic allocation

Value agent 1 ൗ1 2 1 𝜖 1 𝜖 …

Value agent 2 ൗ1 2 ൗ1 4 1 𝜖 1 …

Envy agent 1 − ൗ1 2

Envy agent 2 ൗ1 2

Give to whoever has the highest envy



Greedy deterministic allocation

Value agent 1 ൗ1 2 1 𝜖 1 𝜖 …

Value agent 2 ൗ1 2 ൗ1 4 1 𝜖 1 …

Envy agent 1 − ൗ1 2 ൗ1 2

Envy agent 2 ൗ1 2 ൗ1 4

Give to whoever has the highest envy



Greedy deterministic allocation

Value agent 1 ൗ1 2 1 𝜖 1 𝜖 …

Value agent 2 ൗ1 2 ൗ1 4 1 𝜖 1 …

Envy agent 1 − ൗ1 2 ൗ1 2 ൗ1 2 − 𝜖

Envy agent 2 ൗ1 2 ൗ1 4 ൗ5 4

Give to whoever has the highest envy



Greedy deterministic allocation

Value agent 1 ൗ1 2 1 𝜖 1 𝜖 …

Value agent 2 ൗ1 2 ൗ1 4 1 𝜖 1 …

Envy agent 1 − ൗ1 2 ൗ1 2 ൗ1 2 − 𝜖 ൗ3 2 − 𝜖

Envy agent 2 ൗ1 2 ൗ1 4 ൗ5 4 ൗ5 4 − 𝜖

Give to whoever has the highest envy



Greedy deterministic allocation

Value agent 1 ൗ1 2 1 𝜖 1 𝜖 …

Value agent 2 ൗ1 2 ൗ1 4 1 𝜖 1 …

Envy agent 1 − ൗ1 2 ൗ1 2 ൗ1 2 − 𝜖 ൗ3 2 − 𝜖 ൗ3 2 − 2𝜖
…

Envy agent 2 ൗ1 2 ൗ1 4 ൗ5 4 ൗ5 4 − 𝜖 ൗ9 4 − 𝜖 …

Give to whoever has the highest envy

𝐸𝑁𝑉𝑌𝑇 ≈ 𝑇 ∕ 2



Items arrive one at a time

• Pretend that every agent values every item at 1.

• Allocate every item uniformly at random. 

• Max change in 𝐸𝑁𝑉𝑌𝑖𝑗 is 1. T items arrive, 𝑖 gets it w.p. 1/𝑛

• Random walk with step size 1, T/n steps. Deviation  ~ 𝑇/𝑛

Theorem. Allocating unit-valued items uniformly at random yields 𝐸𝑁𝑉𝑌𝑇 ∈

𝑂 𝑇 log Τ𝑛 𝑛 with high probability, and 𝑬 𝐸𝑁𝑉𝑌𝑇 ∈ 𝑂 𝑇 log Τ𝑇 𝑛 .



Items arrive in batches



(1, 1/2, 1/4)

(1, 1, 1)
(0, 1/3,1/2)

(1/2, 0,1/2)
(1/8, 3/4,1)



Next batch arrives

( Τ𝑇 𝑘 batches)



Intuition

• When 𝑘 = 1, 𝐸𝑁𝑉𝑌𝑇 ∈ ෩Θ( 𝑇 ∕ 𝑛)

• When 𝑘 = 𝑇, 𝐸𝑁𝑉𝑌𝑇 ≤ 1

𝑘 = 1

• Envy changed by ≤ 1 per round

• 𝐸𝑁𝑉𝑌𝑖𝑗 changed ≈ 𝑇 ∕ 𝑛 times

• Bound: 𝐸𝑁𝑉𝑌𝑇 ∈ ෩Θ(1 ⋅ 𝑇 ∕ 𝑛)

General 𝑘

• Envy changes by ≤ 1 per round

• 𝐸𝑁𝑉𝑌𝑖𝑗 may change 𝑇 ∕ 𝑘 times

• Bound: 𝐸𝑁𝑉𝑌𝑇 ∈ ෩Θ( 𝑇 ∕ 𝑘) ?

Theorem. 𝐸𝑁𝑉𝑌𝑇,𝑘 ∈ Ω( 𝑇/𝑘𝑛) and 𝐸𝑁𝑉𝑌𝑇,𝑘 ∈ ෨𝑂( 𝑇/𝑘).



Upper bound (batches)

Problems

• Can we find `balanced’ allocations across batches?

Let’s try rounding near-integral envy-free allocations. 

General 𝑘

• Envy changes by ≤ 1 per round

• 𝐸𝑁𝑉𝑌𝑖𝑗 may change 𝑇 ∕ 𝑘 times

• Bound: 𝐸𝑁𝑉𝑌𝑇 ∈ ෩Θ( 𝑇 ∕ 𝑘) ?

We don’t need EF1 (step size 1) per batch, any 
bounded constant change in envies will do.



Finding near integral envy-free solutions

• 𝑥𝑖𝑗 fraction of item 𝑗 given to agent 𝑖

• 𝑣𝑖𝑗 ≤ 1 utility of agent 𝑖 for item 𝑗

σ𝑗 𝑣𝑖𝑗𝑥𝑖𝑗 ≥ σ𝑗 𝑣𝑖𝑗𝑥𝑘𝑗 ∀𝑖, 𝑘 Envy-freeness

σ𝑖 𝑥𝑖𝑗 = 1 ∀𝑗 Every item assigned

𝑥𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 Non-negativity

Feasible solution is envy-free. We have to round it to get allocation

Rounding introduces envy: up to 1 per rounded item per agent

How many fractional values?
Number of variables: 𝑛𝑚

Number of const: n2 − n +𝑚
So ≤ 𝑛2 − 𝑛 +𝑚 pos. 

variables

(Basically) tight, so ~𝑛
fractional items per agent

Rounding introduces 𝑛 envy



Theorem (Stromquist, 1980). Suppose 𝑛 agents have `reasonable’ valuations 
over 0,1 . Then there exists an envy-free division of the interval in which 
every agent receives a single contiguous segment. 



Theorem (Stromquist, 1980). Suppose 𝑛 agents have `reasonable’ valuations 
over 0,1 . Then there exists an envy-free division of the interval in which 
every agent receives a single contiguous segment. 



Theorem (Stromquist 1980). Suppose 𝑛 agents have `reasonable’ valuations 
over 0,1 . Then there exists an envy-free division of the interval in which 
every agent receives a single contiguous segment. 



Theorem (Stromquist 1980). Suppose 𝑛 agents have `reasonable’ valuations 
over 0,1 . Then there exists an envy-free division of the interval in which 
every agent receives a single contiguous segment. 

• No player receives more than two fractional items. 



Theorem (Stromquist 1980). Suppose 𝑛 agents have `reasonable’ valuations 
over 0,1 . Then there exists an envy-free division of the interval in which 
every agent receives a single contiguous segment. 

• No player receives more than two fractional items. 

• Rounding fractional items randomly guarantees envy changes by ≤ 4



Theorem (Stromquist 1980). Suppose 𝑛 agents have `reasonable’ valuations 
over 0,1 . Then there exists an envy-free division of the interval in which 
every agent receives a single contiguous segment. 

• 𝑥𝑖𝑗 fraction of item 𝑗 given to agent 𝑖

• 𝑣𝑖𝑗 ≤ 1 utility of agent 𝑖 for item 𝑗

• Indicator variables 𝑥𝑖𝑗
0 , 𝑥𝑖𝑗

1 : sum to 0 when 𝑥𝑖𝑗 is fractional, sum to 1 o.w.

σ𝑗 𝑣𝑖𝑗𝑥𝑖𝑗 ≥ σ𝑗 𝑣𝑖𝑗𝑥𝑘𝑗 ∀𝑖, 𝑘 Envy-freeness

σ𝑖 𝑥𝑖𝑗 = 1 ∀𝑗 Every item assigned

𝑥𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 Non-negativity

𝑥𝑖𝑗
0 ≤ 𝑥𝑖𝑗 ≤ 1 − 𝑥𝑖𝑗

1 ∀𝑖, 𝑗 Indicator variable constraints

σ𝑗 𝑥𝑖𝑗
0 + 𝑥𝑖𝑗

1 ≥ 𝑚 − 2 ∀𝑖 At most 2 fractional items per agent

𝑥𝑖𝑗
0 , 𝑥𝑖𝑗

1 ∈ 0,1 ∀𝑖, 𝑗



Questions


